期刊文献+

何时任意常半径的切球丛是Einstein的(英文)

When is the Tangent Sphere Bundle with Arbitrary Constant Radius Einstein
下载PDF
导出
摘要 研究具有任意常半径r的切球丛,得到该切球丛是Einstein的一个充分必要条件。 The paper studies the tangent bundle with arbitrary constant radius γ and derives a necessary and sufficient condition for such tangent sphere bundle to be Einstein.
出处 《数学研究》 CSCD 2009年第3期244-250,共7页 Journal of Mathematical Study
关键词 切球丛 超曲面 EINSTEIN流形 RICCI张量 Tangent sphere bundle hypersurface Einstein manifold Ricci tensor
  • 相关文献

参考文献12

  • 1Sasaki S.On the differential geometry of tangent bundls of Riemannian manifolds.Tohoku Mathematical Journal,1958,10:338-354. 被引量:1
  • 2Mnsso E,Tricerri F.Riemannian metrics on tangent sphere bundles.Annali di Matematica Pura ed Applicata,1987,35:79-482. 被引量:1
  • 3Boeckx E,Vanhecke L.Unit tangent sphere bundles with constant scalar curvature.Czechoslovak Mathematical Journal,2001,51(126):523-544. 被引量:1
  • 4Munteanu M I.Some Aspects on the Geometry of the Tangent Bundles and Tangent Sphere Bundles of a Riemannian Manifold.Mediterranean Journal of Mathematics,2008,5:43-59. 被引量:1
  • 5Blair D E.When is the tangent bundle locally symmetric? Singapore:Geometry and Topology,Word Scientific,1989,15-30. 被引量:1
  • 6Boeckx E,Vanhecke L.Curvature homogeneous unit tangent sphere bundles.Publicationes Mathematicae Debrecen,1998,35:389-413. 被引量:1
  • 7Blair D E,Koufogiorgos T.When is the tangent sphere bundle conformally flat? Journal of Geometry,1994,49:55-66. 被引量:1
  • 8Kowalski O.Curvature of the induced Riemannian metric of the tangent bundle of a Riemannian manifold.Journal f ü r die Reine und Angewandte Mathematik,1971,250:124-129. 被引量:1
  • 9Chen B Y,Vanhecke L.Differential geometry of geodesic spheres.Journal f ü r die Reine und Angewandte Mathematik,1981,325:28-67. 被引量:1
  • 10Besse A L.Einstein manifolds.Ergeb.Math Grenzgeb,Springer-Verlag,Berlin,Heidelberg,New York,1987. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部