何时任意常半径的切球丛是Einstein的(英文)
When is the Tangent Sphere Bundle with Arbitrary Constant Radius Einstein
摘要
研究具有任意常半径r的切球丛,得到该切球丛是Einstein的一个充分必要条件。
The paper studies the tangent bundle with arbitrary constant radius γ and derives a necessary and sufficient condition for such tangent sphere bundle to be Einstein.
出处
《数学研究》
CSCD
2009年第3期244-250,共7页
Journal of Mathematical Study
参考文献12
-
1Sasaki S.On the differential geometry of tangent bundls of Riemannian manifolds.Tohoku Mathematical Journal,1958,10:338-354. 被引量:1
-
2Mnsso E,Tricerri F.Riemannian metrics on tangent sphere bundles.Annali di Matematica Pura ed Applicata,1987,35:79-482. 被引量:1
-
3Boeckx E,Vanhecke L.Unit tangent sphere bundles with constant scalar curvature.Czechoslovak Mathematical Journal,2001,51(126):523-544. 被引量:1
-
4Munteanu M I.Some Aspects on the Geometry of the Tangent Bundles and Tangent Sphere Bundles of a Riemannian Manifold.Mediterranean Journal of Mathematics,2008,5:43-59. 被引量:1
-
5Blair D E.When is the tangent bundle locally symmetric? Singapore:Geometry and Topology,Word Scientific,1989,15-30. 被引量:1
-
6Boeckx E,Vanhecke L.Curvature homogeneous unit tangent sphere bundles.Publicationes Mathematicae Debrecen,1998,35:389-413. 被引量:1
-
7Blair D E,Koufogiorgos T.When is the tangent sphere bundle conformally flat? Journal of Geometry,1994,49:55-66. 被引量:1
-
8Kowalski O.Curvature of the induced Riemannian metric of the tangent bundle of a Riemannian manifold.Journal f ü r die Reine und Angewandte Mathematik,1971,250:124-129. 被引量:1
-
9Chen B Y,Vanhecke L.Differential geometry of geodesic spheres.Journal f ü r die Reine und Angewandte Mathematik,1981,325:28-67. 被引量:1
-
10Besse A L.Einstein manifolds.Ergeb.Math Grenzgeb,Springer-Verlag,Berlin,Heidelberg,New York,1987. 被引量:1
-
1高红铸.CP^2#■中的光滑2-纽结[J].科学通报,1994,39(9):782-785.
-
2欧业林.关于曲面的切球丛的两点注记[J].数学杂志,1991,11(1):49-52.
-
3周建伟.关于Gauss映射的一些结果(英文)[J].苏州大学学报(自然科学版),1998,14(3):6-10.
-
4徐栩,徐森林.THOM类与广义POINCAR- HOPF定理(英文)[J].数学杂志,2003,23(4):412-416.
-
5莫小欢.曲率R部分为零的Finsler空间结构(英文)[J].复旦学报(自然科学版),2000,39(5):518-524.
-
6孙晓明,陈景华.关于Grassmanian不动点定理的推广[J].福建师范大学学报(自然科学版),2002,18(1):1-4.
-
7李希国,段一士,宋建军.SO(n)规范势的可分解理论[J].高能物理与核物理,2001,25(4):296-303. 被引量:2