We investigate the uniqueness problems of meromorphic functions and their difference operators by using a new method.It is proved that if a non-constant meromorphic function f shares a non-zero constant and ∞ countin...We investigate the uniqueness problems of meromorphic functions and their difference operators by using a new method.It is proved that if a non-constant meromorphic function f shares a non-zero constant and ∞ counting multiplicities with its difference operators Δcf(z) and Δ_(c)^(2)f(z), thenΔcf(z)≡Δ_(c)^(2)f(z).In particular,we give a difference analogue of a result of Jank-Mues-Volkmann.Our method has two distinct features:(ⅰ) It converts the relations between functions into the corresponding vectors.This makes it possible to deal with the uniqueness problem by linear algebra and combinatorics.(ⅱ) It circumvents the obstacle of the difference logarithmic derivative lemma for meromorphic functions of infinite order,since this method does not depend on the growth of the functions.Furthermore,the idea in this paper can also be applied to the case for several variables.展开更多
In this article, we mainly devote to proving uniqueness results for entire functionssharing one small function CM with their shift and difference operator simultaneously. Letf(z) be a nonconstant entire function of ...In this article, we mainly devote to proving uniqueness results for entire functionssharing one small function CM with their shift and difference operator simultaneously. Letf(z) be a nonconstant entire function of finite order, c be a nonzero finite complex constant, and n be a positive integer. If f(z), f(z+c), and △n cf(z) share 0 CM, then f(z+c)≡Af(z), where A(≠0) is a complex constant. Moreover, let a(z), b(z)( O) ∈ S(f) be periodic entire functions with period c and if f(z) - a(z), f(z + c) - a(z), △cn f(z) - b(z) share 0 CM, then f(z + c) ≡ f(z).展开更多
Shifts-invariant spaces in L 1(R) are investigated. First,based on a study of the system of linearly difference operators,the method of constructing generators with linearly independent shifts is provided. Then the c...Shifts-invariant spaces in L 1(R) are investigated. First,based on a study of the system of linearly difference operators,the method of constructing generators with linearly independent shifts is provided. Then the characterizations of the closed shift-invariant subspaces in L 1(R) are given in terms of such generators and the local basis of shift-invariant subspaces.展开更多
We study a uniqueness question of entire functions order with their difference operators, and deal with a question in this paper extend the corresponding results obtained by Liu Examples are provided to show that the ...We study a uniqueness question of entire functions order with their difference operators, and deal with a question in this paper extend the corresponding results obtained by Liu Examples are provided to show that the results in this paper, in sharing an entire function of smaller posed by Liu and Yang. The results -Yang and by Liu-Laine respectively. a sense, are the best possible.展开更多
In this paper, Leibniz' formula of generalized divided difference with respect to a class of differential operators whose basic sets of solutions have power form, is considered. The recurrence formula of Green fun...In this paper, Leibniz' formula of generalized divided difference with respect to a class of differential operators whose basic sets of solutions have power form, is considered. The recurrence formula of Green function about the operators is also given.展开更多
This paper investigates a solution technique for solving a two-dimensional Kuramoto-Sivashinsky equation discretized using a finite difference method. It consists of an order reduction method into a coupled system of ...This paper investigates a solution technique for solving a two-dimensional Kuramoto-Sivashinsky equation discretized using a finite difference method. It consists of an order reduction method into a coupled system of second-order equations, and to formulate the fully discretized, implicit time-marched system as a Lyapunov- Sylvester matrix equation. Convergence and stability is examined using Lyapunov criterion and manipulating generalized Lyapunov-Sylvester operators. Some numerical implementations are provided at the end to validate the theoretical results.展开更多
In this paper a nonlinear Euler-Poisson-Darboux system is considered.In a first part,we proved the genericity of the hypergeometric functions in the development of exact solutions for such a system in some special cas...In this paper a nonlinear Euler-Poisson-Darboux system is considered.In a first part,we proved the genericity of the hypergeometric functions in the development of exact solutions for such a system in some special cases leading to Bessel type differential equations.Next,a finite difference scheme in two-dimensional case has been developed.The continuous system is transformed into an algebraic quasi linear discrete one leading to generalized Lyapunov-Sylvester operators.The discrete algebraic system is proved to be uniquely solvable,stable and convergent based on Lyapunov criterion of stability and Lax-Richtmyer equivalence theorem for the convergence.A numerical example has been provided at the end to illustrate the efficiency of the numerical scheme developed in section 3.The present method is thus proved to be more accurate than existing ones and lead to faster algorithms.展开更多
In this paper,we study the uniqueness of entire functions and prove the following theorem.Let f be a transcendental entire function of finite order.Then there exists at most one positive integer k,such that f(z)△^(k)...In this paper,we study the uniqueness of entire functions and prove the following theorem.Let f be a transcendental entire function of finite order.Then there exists at most one positive integer k,such that f(z)△^(k)_(c)f(z)-R(z)has finitely many zeros,where R(z)is a non-vanishing rational function and c is a nonzero complex number.Our result is an improvement of the theorem given by Andasmas and Latreuch[1].展开更多
研究了亚纯函数与其差分算子分担多项式的唯一性问题,证明了:设f是一个有穷级非常数亚纯函数,p(z)(■0)是一个多项式.如果f,△_cf与△_c^2f CM分担∞,p(z),则f≡△_cf或f(z)=e^(Az+B)+b,其中p(z)≡b≠0,A≠0满足e^(Ac)=1.本文结果是对Ch...研究了亚纯函数与其差分算子分担多项式的唯一性问题,证明了:设f是一个有穷级非常数亚纯函数,p(z)(■0)是一个多项式.如果f,△_cf与△_c^2f CM分担∞,p(z),则f≡△_cf或f(z)=e^(Az+B)+b,其中p(z)≡b≠0,A≠0满足e^(Ac)=1.本文结果是对Chang, Fang(Chang J M, Fang M L. Uniqueness of entire functions and fixed points [J]. Kodai Math J, 2002, 25(1):309-320.)结果的差分模拟,并且完整回答了Chen, Chen(Chen B Q, Chen Z X, Li S. Uniqueness theorems on entire functions and their difference operators or shifts [J]. Abstr Appl Anal, 2012,Art. ID 906893, 8 pp.)的问题.展开更多
In this paper,we propose numerical methods for the Riesz space fractional advection-dispersion equations with delay(RFADED).We utilize the fractional backward differential formulas method of second order(FBDF2)and wei...In this paper,we propose numerical methods for the Riesz space fractional advection-dispersion equations with delay(RFADED).We utilize the fractional backward differential formulas method of second order(FBDF2)and weighted shifted Grünwald difference(WSGD)operators to approximate the Riesz fractional derivative and present the finite difference method for the RFADED.Firstly,the FBDF2 and the shifted Grünwald methods are introduced.Secondly,based on the FBDF2 method and the WSGD operators,the finite difference method is applied to the problem.We also show that our numerical schemes are conditionally stable and convergent with the accuracy of O(+h2)and O(2+h2)respectively.Thirdly we find the analytical solution for RFDED in terms Mittag-Leffler type functions.Finally,some numerical examples are given to show the efficacy of the numerical methods and the results are found to be in complete agreement with the analytical solution.展开更多
基金Supported by National Natural Science Foundation of China(Grant Nos.12071047,12171127,11901311)National Key Technologies R&D Program of China(Grant No.2020YFA0713300)。
文摘We investigate the uniqueness problems of meromorphic functions and their difference operators by using a new method.It is proved that if a non-constant meromorphic function f shares a non-zero constant and ∞ counting multiplicities with its difference operators Δcf(z) and Δ_(c)^(2)f(z), thenΔcf(z)≡Δ_(c)^(2)f(z).In particular,we give a difference analogue of a result of Jank-Mues-Volkmann.Our method has two distinct features:(ⅰ) It converts the relations between functions into the corresponding vectors.This makes it possible to deal with the uniqueness problem by linear algebra and combinatorics.(ⅱ) It circumvents the obstacle of the difference logarithmic derivative lemma for meromorphic functions of infinite order,since this method does not depend on the growth of the functions.Furthermore,the idea in this paper can also be applied to the case for several variables.
基金supported by the Natural Science Foundation of Guangdong Province in China(2014A030313422,2016A030310106,2016A030313745)
文摘In this article, we mainly devote to proving uniqueness results for entire functionssharing one small function CM with their shift and difference operator simultaneously. Letf(z) be a nonconstant entire function of finite order, c be a nonzero finite complex constant, and n be a positive integer. If f(z), f(z+c), and △n cf(z) share 0 CM, then f(z+c)≡Af(z), where A(≠0) is a complex constant. Moreover, let a(z), b(z)( O) ∈ S(f) be periodic entire functions with period c and if f(z) - a(z), f(z + c) - a(z), △cn f(z) - b(z) share 0 CM, then f(z + c) ≡ f(z).
基金the National Natural Science Foundation of China(1 0 0 71 0 71 )
文摘Shifts-invariant spaces in L 1(R) are investigated. First,based on a study of the system of linearly difference operators,the method of constructing generators with linearly independent shifts is provided. Then the characterizations of the closed shift-invariant subspaces in L 1(R) are given in terms of such generators and the local basis of shift-invariant subspaces.
基金Supported by National Natural Science Foundation of China(Grant No.11171184)the Natural Science Foundation of Shandong Province,China(Grant No.Z2008A01)
文摘We study a uniqueness question of entire functions order with their difference operators, and deal with a question in this paper extend the corresponding results obtained by Liu Examples are provided to show that the results in this paper, in sharing an entire function of smaller posed by Liu and Yang. The results -Yang and by Liu-Laine respectively. a sense, are the best possible.
文摘In this paper, Leibniz' formula of generalized divided difference with respect to a class of differential operators whose basic sets of solutions have power form, is considered. The recurrence formula of Green function about the operators is also given.
文摘This paper investigates a solution technique for solving a two-dimensional Kuramoto-Sivashinsky equation discretized using a finite difference method. It consists of an order reduction method into a coupled system of second-order equations, and to formulate the fully discretized, implicit time-marched system as a Lyapunov- Sylvester matrix equation. Convergence and stability is examined using Lyapunov criterion and manipulating generalized Lyapunov-Sylvester operators. Some numerical implementations are provided at the end to validate the theoretical results.
文摘In this paper a nonlinear Euler-Poisson-Darboux system is considered.In a first part,we proved the genericity of the hypergeometric functions in the development of exact solutions for such a system in some special cases leading to Bessel type differential equations.Next,a finite difference scheme in two-dimensional case has been developed.The continuous system is transformed into an algebraic quasi linear discrete one leading to generalized Lyapunov-Sylvester operators.The discrete algebraic system is proved to be uniquely solvable,stable and convergent based on Lyapunov criterion of stability and Lax-Richtmyer equivalence theorem for the convergence.A numerical example has been provided at the end to illustrate the efficiency of the numerical scheme developed in section 3.The present method is thus proved to be more accurate than existing ones and lead to faster algorithms.
基金Supported by National Natural Science Foundation of China(Grant No.11701188).
文摘In this paper,we study the uniqueness of entire functions and prove the following theorem.Let f be a transcendental entire function of finite order.Then there exists at most one positive integer k,such that f(z)△^(k)_(c)f(z)-R(z)has finitely many zeros,where R(z)is a non-vanishing rational function and c is a nonzero complex number.Our result is an improvement of the theorem given by Andasmas and Latreuch[1].
文摘研究了亚纯函数与其差分算子分担多项式的唯一性问题,证明了:设f是一个有穷级非常数亚纯函数,p(z)(■0)是一个多项式.如果f,△_cf与△_c^2f CM分担∞,p(z),则f≡△_cf或f(z)=e^(Az+B)+b,其中p(z)≡b≠0,A≠0满足e^(Ac)=1.本文结果是对Chang, Fang(Chang J M, Fang M L. Uniqueness of entire functions and fixed points [J]. Kodai Math J, 2002, 25(1):309-320.)结果的差分模拟,并且完整回答了Chen, Chen(Chen B Q, Chen Z X, Li S. Uniqueness theorems on entire functions and their difference operators or shifts [J]. Abstr Appl Anal, 2012,Art. ID 906893, 8 pp.)的问题.
文摘In this paper,we propose numerical methods for the Riesz space fractional advection-dispersion equations with delay(RFADED).We utilize the fractional backward differential formulas method of second order(FBDF2)and weighted shifted Grünwald difference(WSGD)operators to approximate the Riesz fractional derivative and present the finite difference method for the RFADED.Firstly,the FBDF2 and the shifted Grünwald methods are introduced.Secondly,based on the FBDF2 method and the WSGD operators,the finite difference method is applied to the problem.We also show that our numerical schemes are conditionally stable and convergent with the accuracy of O(+h2)and O(2+h2)respectively.Thirdly we find the analytical solution for RFDED in terms Mittag-Leffler type functions.Finally,some numerical examples are given to show the efficacy of the numerical methods and the results are found to be in complete agreement with the analytical solution.