期刊文献+

三维VTI介质qP波方程频率空间域有限差分高阶加权算子 被引量:3

Finite difference high-order weighted-averaging operator for frequency-space domain qP wave in 3-D VTI media
下载PDF
导出
摘要 波动方程有限差分法是波场模拟的一个重要方法.为解决常规有限差分法存在着数值频散的问题,本文从具有垂直对称轴的三维横向各向同性(VTI)介质频率-空间域qP波动方程出发,在常规差分算子的基础上构造了适合三维VTI介质的频率空间域有限差分优化算子.然后利用最优化理论中的Gauss-Newton法求解了优化算子的系数,使差分方程的相速度与波动方程的相速度尽量吻合,从而在理论上使网格数值频散达到极小.精度对比分析及数值测试表明,有限差分优化算子具有较高的波场数值模拟精度,有效地压制了数值频散现象,为三维VTI介质频率-空间域qP波正演模拟研究提供了理论基础. The finite difference is an important method of wave-field numerical simulation.In order to solve the problem of numerical dispersion of the conventional finite difference method,we start with frequency-space domain qP wave equation in 3-D transversely isotropy with a vertical axis of symmetry(VTI) media,and present the optimal finite difference operators based on conventional finite difference operators.Then we get the optimal coefficient by the Gauss-Newton method in optimization theory to make the finite-difference equation phase velocity equal to that of wave equation,so the numerical dispersion and numerical anisotropy will be minimum in theory.The results of velocity dispersion analysis and numerical simulation show that the finite-difference method using optimal operators can improve the numerical simulation accuracy,and decrease the numerical dispersion efficiently which can supply the foundation for qP wave simulation in frequency-space domain in 3-D VTI media.
出处 《地球物理学进展》 CSCD 北大核心 2009年第1期211-222,共12页 Progress in Geophysics
基金 国家863计划项目(No.2002AA614010)资助
关键词 VTI介质 频空域 有限差分 优化算子 数值频散 VTI media,frequency-space domain,finite difference,optimal operators,numerical dispersion
  • 相关文献

参考文献19

二级参考文献21

  • 1黄自萍,张铭,吴文青,董良国.弹性波传播数值模拟的区域分裂法[J].地球物理学报,2004,47(6):1094-1100. 被引量:26
  • 2邵秀民,蓝志凌.各向异性弹性介质中波动方程的吸收边界条件[J].地球物理学报,1995,38(A01):56-73. 被引量:17
  • 3董和风,王克协.弹性固体地层-流体井孔弹性波场的有限差分数值模拟[J].地球物理学报,1995,38(A01):205-215. 被引量:13
  • 4Cheng N Y. Borehole Wave Propagation in Isotropic and Anisotropic Media: Three-dimensional Finite Difference Approach[D]. PhD Thesis, Massachusetts Institute of Technology, Cambridge, MA. 1994. 被引量:1
  • 5Yoon K H. McMechan G.A. 3-D finite-difference modelling of elastic waves in borehole envirenments[J]. Geophysics, 1992, 57(3) :793 -804. 被引量:1
  • 6B Engquist, A Majda. Absorbing Boundary Conditions for the Numerical Simulation of Waves[ J]. Mathematics of Computation, 1977, 31(139) :629-651. 被引量:1
  • 7G Mur. Absorbing Boundary Conditons for the Finite Difference Approximation of the Time Domain Electromagnetic Field Equations [J].IEEE Trans. Electromagn. Compat. , 1981, EMC23(4):377- 382. 被引量:1
  • 8Higdon R L. Numerical Absorbing Boundary Conditions for the Wave Equation[J]. Mathematics of Computation, 1987, 49(179) :65 -90. 被引量:1
  • 9Higdon R L. Absorbing boundary conditions for elastic waves. Geophysics, 1991, 56(2) : 231 - 241. 被引量:1
  • 10ZengY Q,He J Q,Liu Q H.The application of the perfectly matched layer in numerical modeling of wave propagation in poroelastic media.Geophysics,2001,66(4):1258 ~ 1266 被引量:1

共引文献425

同被引文献60

引证文献3

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部