期刊文献+

Uniqueness of Entire Functions Concerning Differences

涉及整函数差分的唯一性研究
下载PDF
导出
摘要 In this paper,we study the uniqueness of entire functions and prove the following theorem.Let f be a transcendental entire function of finite order.Then there exists at most one positive integer k,such that f(z)△^(k)_(c)f(z)-R(z)has finitely many zeros,where R(z)is a non-vanishing rational function and c is a nonzero complex number.Our result is an improvement of the theorem given by Andasmas and Latreuch[1].
作者 QIU Shi-lin LIU Dan 邱仕林;刘丹(Institute of Applied Mathematics,South China Agricultural University,Guangzhou 510642,China)
出处 《Chinese Quarterly Journal of Mathematics》 2021年第4期376-389,共14页 数学季刊(英文版)
基金 Supported by National Natural Science Foundation of China(Grant No.11701188).
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部