The Schottky diode (Al/p-CuInSe2/FTO) was fabricated by simple deposition of pure Aluminum on the front side of the CuInSe2 thin film. We have investigated its electrical characteristics by measuring the current-volta...The Schottky diode (Al/p-CuInSe2/FTO) was fabricated by simple deposition of pure Aluminum on the front side of the CuInSe2 thin film. We have investigated its electrical characteristics by measuring the current-voltage (I-V), the capacitance-voltage (C-V) and the electrical impedance in the range of temperature (300 K - 425 K). At room temperature, this heterostructure has shown non-ideal Schottky behavior with 3.98 as ideality factor and 38 μA/cm2 as a reverse saturated current density. The C-V measured at 100 kHz has shown non-linear behavior and an increase with temperature. Similarly, we have estimated, at room temperature, the carrier doping density, the built-in potential and the depletion layer width which are of about 8.66 × 1015 cm﹣3, 1.12 V and 0.37 μm respectively. By the impedance spectroscopy technique, we have found a decrease with temperature of all the serial resistance Rs, the parallel resistance Rp and the capacitance Cp. The frequency dependence of the imaginary part of this impedance was carried out to characterize the carrier transport properties in the heterostructure. From the Arrhenius diagram, we have estimated the activation energy at 460 meV. An equivalent electrical circuit was used for modeling these results.展开更多
CuInS2 thin films have been prepared by ion layer gas reaction (ILGAR) using C2H5OH as solvent, CuC1and InCl3 as reagents and H2S gas as sulfuration source. The effects of cationic concentrations and numbers of cycle ...CuInS2 thin films have been prepared by ion layer gas reaction (ILGAR) using C2H5OH as solvent, CuC1and InCl3 as reagents and H2S gas as sulfuration source. The effects of cationic concentrations and numbers of cycle on the properties of CuInS2 film were investigated. The chemical composition, crystalline structure, surface topography, deposited rate, optical and electronic properties of the films were characterized by X-ray diffractrometry (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), ultraviolet-visible spectrometry (UV-Vis) and Hall System. The results show that the crystalline of CuInS2 thin films and the deposition rate have been improved with the increase of cationic concentration, while CuxS segregation phases appear with further increasing cationic concentration. The deposition rate is close to constant as cationic concentration is fixed.CuInS2 thin film derived form lower cationic concentration is uniform, compact and good in adhesion to the substrates. The absorption coefficient of CuInS2 thin films is larger than 104 cm^-1, and the band gap Eg is in the range of 1.30-1.40 eV. The dark resisitivity of the thin film decreases from 50 to 10 Ω·cm and the carrier concentration ranges are over 10^16 cm^-3.展开更多
文摘The Schottky diode (Al/p-CuInSe2/FTO) was fabricated by simple deposition of pure Aluminum on the front side of the CuInSe2 thin film. We have investigated its electrical characteristics by measuring the current-voltage (I-V), the capacitance-voltage (C-V) and the electrical impedance in the range of temperature (300 K - 425 K). At room temperature, this heterostructure has shown non-ideal Schottky behavior with 3.98 as ideality factor and 38 μA/cm2 as a reverse saturated current density. The C-V measured at 100 kHz has shown non-linear behavior and an increase with temperature. Similarly, we have estimated, at room temperature, the carrier doping density, the built-in potential and the depletion layer width which are of about 8.66 × 1015 cm﹣3, 1.12 V and 0.37 μm respectively. By the impedance spectroscopy technique, we have found a decrease with temperature of all the serial resistance Rs, the parallel resistance Rp and the capacitance Cp. The frequency dependence of the imaginary part of this impedance was carried out to characterize the carrier transport properties in the heterostructure. From the Arrhenius diagram, we have estimated the activation energy at 460 meV. An equivalent electrical circuit was used for modeling these results.
文摘CuInS2 thin films have been prepared by ion layer gas reaction (ILGAR) using C2H5OH as solvent, CuC1and InCl3 as reagents and H2S gas as sulfuration source. The effects of cationic concentrations and numbers of cycle on the properties of CuInS2 film were investigated. The chemical composition, crystalline structure, surface topography, deposited rate, optical and electronic properties of the films were characterized by X-ray diffractrometry (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), ultraviolet-visible spectrometry (UV-Vis) and Hall System. The results show that the crystalline of CuInS2 thin films and the deposition rate have been improved with the increase of cationic concentration, while CuxS segregation phases appear with further increasing cationic concentration. The deposition rate is close to constant as cationic concentration is fixed.CuInS2 thin film derived form lower cationic concentration is uniform, compact and good in adhesion to the substrates. The absorption coefficient of CuInS2 thin films is larger than 104 cm^-1, and the band gap Eg is in the range of 1.30-1.40 eV. The dark resisitivity of the thin film decreases from 50 to 10 Ω·cm and the carrier concentration ranges are over 10^16 cm^-3.