Transparent electrodes based on copper nanowires (Cu NWs) have attracted significant attention owing to their advantages including high optical transmittance, good conductivity, and excellent mechanical flexibility....Transparent electrodes based on copper nanowires (Cu NWs) have attracted significant attention owing to their advantages including high optical transmittance, good conductivity, and excellent mechanical flexibility. However, low-cost, high-performance, and environmental friendly solar cells with all-Cu NW electrodes have not been realized until now. Herein, top and bottom transparent electrodes based on Cu NWs with low surface roughness and homogeneous conductivity are fabricated. Then, semi-transparent polymer solar cells (PSCs) with the inverted structure of polyacrylate/Cu NWs/poly(3,4- ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) (PH1000)/Y-TiO2/ poly(3-hexylthiophene):[6,6]-phenyl-C61-butyric acid 3,4,5-tris(octyloxy)benzyl/ PEDOT:PSS (4083)/Cu NWs/polyimide/polydimethylsiloxane are constructed; these could absorb light from both sides with a power conversion efficiency reaching 1.97% and 1.85%. Furthermore, the PSCs show an average transmittance of 42% in the visible region, which renders them suitable for some specialized applications such as power-generating windows and building-integrated photovoltaics. The indium tin oxide (ITO)- and noble metal-free PSCs could pave new pathways for fabricating cost-effective semi-transparent PSCs.展开更多
Detwinning is a unique deformation mechanism of nanotwinned metals with twin lamellae thickness down to a few nanometers.In this work we investigate the impact of detwinning mechanism on the tensile ductility of twinn...Detwinning is a unique deformation mechanism of nanotwinned metals with twin lamellae thickness down to a few nanometers.In this work we investigate the impact of detwinning mechanism on the tensile ductility of twinned Cu nanowires containing high density of parallel twin boundaries by means of molecular dynamics simulations.Simulation results show that the fracture strain of twinned Cu nanowires has a strong dependence on twin boundary spacing,resulting from the competition between individual deformation modes.Particularly for the twinned Cu nanowires containing the thinnest twin lamellaes,the dominant detwinning mechanism leads to a significant reduction in the tensile ductility.It is found that detwinning originates from twin boundary migration,which is a result of the glide of lattice partial dislocations on the twin planes.This work advances our fundamental understanding of the twin boundary-related mechanical properties of twinned metallic nanowires.展开更多
Long(15-40 μm), thin(diameter of 20 ± 5 nm), and well-dispersed CuNWs Cu nanowires were prepared. The high-resolution TEM and selected area electron diffraction showed that the CuNWs were single-crystalline. To ...Long(15-40 μm), thin(diameter of 20 ± 5 nm), and well-dispersed CuNWs Cu nanowires were prepared. The high-resolution TEM and selected area electron diffraction showed that the CuNWs were single-crystalline. To investigate the growth mechanism, we examined the microstructure of these CuNWs at different reaction time. It was found that the CuNWs were actually formed through the self-assembling of Cu nanoparticles along the [110] direction. The transparent electrodes fabricated using the CuNWs achieved a high transparency of 76 % at 31±5 Ω/□.展开更多
A solar-light double illumination photoelectrocatalytic cell(SLDIPEC) was fabricated for autonomous CO2 reduction and O2 evolution with the aid of photosystem II(PS-II, an efficient light-driven water-oxidized enzy...A solar-light double illumination photoelectrocatalytic cell(SLDIPEC) was fabricated for autonomous CO2 reduction and O2 evolution with the aid of photosystem II(PS-II, an efficient light-driven water-oxidized enzyme from nature) and utilized in a photoanode solution. The proposed SLPEC system was composed of Cu foam as the photoanode and p-Si nanowires(Si-NW) as the photocathode. Under solar irradiation, it exhibited a super-photoelectrocatalytic performance for CO2 conversion to methanol, with a high evolution rate(41.94 mmol/hr), owing to fast electron transfer from PS-II to Cu foam.Electrons were subsequently trapped by Si-NW through an external circuit via bias voltage(0.5 V), and a suitable conduction band potential of Si(-0.6 e V) allowed CO2 to be easily reduced to CH3 OH at the photocathode. The constructed Z-scheme between Cu foam and Si-NW can allow the SLDIPEC system to reduce CO2(8.03 mmol/hr) in the absence of bias voltage. This approach makes full use of the energy band mismatch of the photoanode and photocathode to design a highly efficient device for solving environmental issues and producing clean energy.展开更多
基金This work was financially supported by National Natural Science Foundation of China (No. 61301036), Shanghai Science and Technology Rising Star Project (No. 17QA1404700), Youth Innovation Promotion Association CAS (No. 2014226), Shanghai Key Basic Research Project (No. 16JC1402300), and the Major State Research Development Program of China (No. 2016YFA0203000).
文摘Transparent electrodes based on copper nanowires (Cu NWs) have attracted significant attention owing to their advantages including high optical transmittance, good conductivity, and excellent mechanical flexibility. However, low-cost, high-performance, and environmental friendly solar cells with all-Cu NW electrodes have not been realized until now. Herein, top and bottom transparent electrodes based on Cu NWs with low surface roughness and homogeneous conductivity are fabricated. Then, semi-transparent polymer solar cells (PSCs) with the inverted structure of polyacrylate/Cu NWs/poly(3,4- ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) (PH1000)/Y-TiO2/ poly(3-hexylthiophene):[6,6]-phenyl-C61-butyric acid 3,4,5-tris(octyloxy)benzyl/ PEDOT:PSS (4083)/Cu NWs/polyimide/polydimethylsiloxane are constructed; these could absorb light from both sides with a power conversion efficiency reaching 1.97% and 1.85%. Furthermore, the PSCs show an average transmittance of 42% in the visible region, which renders them suitable for some specialized applications such as power-generating windows and building-integrated photovoltaics. The indium tin oxide (ITO)- and noble metal-free PSCs could pave new pathways for fabricating cost-effective semi-transparent PSCs.
基金supported by China Postdoctoral Science Foundation(2012M511463)Heilongjiang Postdoctoral Foundation of China (LBH-Z11143)the ICAMS,Ruhr-University Bochum,Germany
文摘Detwinning is a unique deformation mechanism of nanotwinned metals with twin lamellae thickness down to a few nanometers.In this work we investigate the impact of detwinning mechanism on the tensile ductility of twinned Cu nanowires containing high density of parallel twin boundaries by means of molecular dynamics simulations.Simulation results show that the fracture strain of twinned Cu nanowires has a strong dependence on twin boundary spacing,resulting from the competition between individual deformation modes.Particularly for the twinned Cu nanowires containing the thinnest twin lamellaes,the dominant detwinning mechanism leads to a significant reduction in the tensile ductility.It is found that detwinning originates from twin boundary migration,which is a result of the glide of lattice partial dislocations on the twin planes.This work advances our fundamental understanding of the twin boundary-related mechanical properties of twinned metallic nanowires.
基金Funded by "Hundreds of Talents Program" of Hubei Province,China
文摘Long(15-40 μm), thin(diameter of 20 ± 5 nm), and well-dispersed CuNWs Cu nanowires were prepared. The high-resolution TEM and selected area electron diffraction showed that the CuNWs were single-crystalline. To investigate the growth mechanism, we examined the microstructure of these CuNWs at different reaction time. It was found that the CuNWs were actually formed through the self-assembling of Cu nanoparticles along the [110] direction. The transparent electrodes fabricated using the CuNWs achieved a high transparency of 76 % at 31±5 Ω/□.
基金supported by the National Natural Science Foundation of China (No. 21477079, 21677099, 21237003)the Shanghai Government (No. 11ZR1426300, 13YZ054, 14ZR1430900)+1 种基金the Program for Changjiang Scholars and Innovative Research Team in University (No. IRT1269)the International Joint Laboratory on Resource Chemistry (No. IJLRC)
文摘A solar-light double illumination photoelectrocatalytic cell(SLDIPEC) was fabricated for autonomous CO2 reduction and O2 evolution with the aid of photosystem II(PS-II, an efficient light-driven water-oxidized enzyme from nature) and utilized in a photoanode solution. The proposed SLPEC system was composed of Cu foam as the photoanode and p-Si nanowires(Si-NW) as the photocathode. Under solar irradiation, it exhibited a super-photoelectrocatalytic performance for CO2 conversion to methanol, with a high evolution rate(41.94 mmol/hr), owing to fast electron transfer from PS-II to Cu foam.Electrons were subsequently trapped by Si-NW through an external circuit via bias voltage(0.5 V), and a suitable conduction band potential of Si(-0.6 e V) allowed CO2 to be easily reduced to CH3 OH at the photocathode. The constructed Z-scheme between Cu foam and Si-NW can allow the SLDIPEC system to reduce CO2(8.03 mmol/hr) in the absence of bias voltage. This approach makes full use of the energy band mismatch of the photoanode and photocathode to design a highly efficient device for solving environmental issues and producing clean energy.