期刊文献+

不同晶向Cu纳米线结构和电子特性的第一性原理计算 被引量:3

First-principles calculation of the structural and electronic properties of Cu nanowire in different crystallographic directions
下载PDF
导出
摘要 基于密度泛函理论框架下的第一性原理计算方法,系统研究了[100]、[110]和[111]3个低指数晶向不同尺寸Cu纳米线的弛豫结构和电子特性。由于配位数的减少,纳米线表面原子向内收缩且角部区域内的原子弛豫量较大,即存在着"倒棱"现象。纳米线的结合能随着其线径的增加而增加,[110]晶向六边形结构的Cu纳米线最稳定,这与在实验中最容易形成该晶向纳米线的结果一致。纳米线表面原子与其最近邻原子间的相互作用明显增强,因此相对于体相Cu晶体,纳米线的力学性能得以提高。所有Cu纳米线都具有金属性,且其量子电导随着线径的增加而增大。 Using first-principles calculations based on density-functional theory,the relaxed struc-tures and electronic properties have been investigated for Cu nanowires in [100],[110]and [111]crystallographic directions with different cross sections.Due to the reduced atomic coordi-nations,the surface atoms relaxed inward and the relaxation amount of the apex atoms was lar-ger,which result in a round corner phenomenon for Cu nanowires.The binding energy per bond shows significant increase with the size of the nanowire.The [110]crystallographic wire is more stable than the others and easily synthesize in experiment,which agrees with the experimental re-sults.The enhanced interactions appear between the surface atoms and their first nearest neigh-bor atoms,which enhances the mechanical properties of the nanowire compared to bulk.All the nanowires are metallic and the quantum conductance increases with the diameter of nanowire.
出处 《陕西师范大学学报(自然科学版)》 CAS CSCD 北大核心 2015年第2期28-33,共6页 Journal of Shaanxi Normal University:Natural Science Edition
基金 宁夏自然科学基金资助项目(NZ14013)
关键词 Cu纳米线 弛豫结构 电子性质 第一性原理 Cu nanowires relaxed structures electronic property first-principles
  • 相关文献

参考文献28

  • 1Cui Yi, Wei Qingqiao, Park Hongkun, et al. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species[J]. Science, 2001, 293(5533) : 1289-1292. 被引量:1
  • 2Beeklllan R, Johnston E H, Luo Y, et al. Bridging di-mensions: demultiplexing ultrahigh-density nanowire circuits[J]. Science, 2005, 310(5747): 465-468. 被引量:1
  • 3Huang Yu, Duan Xiangfeng, Wei Qingqiao, et al. Di- rected assembly of one-dimensional nanostructures into functional networks [J]. Science, 2001, 291 (5504) 630-633. 被引量:1
  • 4Melosh N A, Boukai A, Diana F, et al. Ultrahigh-den- sity nanowire lattices and circuits [J]. Science, 2003, 300(5616) : 112-115. 被引量:1
  • 5Duan Xiangfeng Huang Yu, Cui Yi, et al. Indium phosphide nanowires as building blocks for nanoscale e- lectronic and optoelectronic devices [J]. Nature, 2003, 409: 66-69. 被引量:1
  • 6Cleland A N, Roukes M L. A nanometre-scale mechani- cal electrometer[J]. Nature, 1998, 392: 160-163. 被引量:1
  • 7Cornelius T W, BrOtz J, Chtanko N, et al. Controlled fabrication of poly- and single-crystalline bismuth nanowires[J]. Nanotechnology,2005,16(5) .. $246-$249. 被引量:1
  • 8Karim S, Toimil-Molares M E, Balogh A G, et al. Morphological evolution of Au nanowires controlled by Rayleigh instability [J]. Nanotechnology, 2006, 17 (24) : 5954-5959. 被引量:1
  • 9Rubio-Bollinger G, Bahn S R, Agrait N, et al. Mechan- ical properties and formation mechanisms of a wire of single gold atoms[J]. Physical Review Letters, 2001, 87(2) : 026101. 被引量:1
  • 10Gonzdlez J C, Rodrigues V, Bettini J, et al. Indication of unusual pentagonal structures in atomic-size Cu nanowires[J]. Physical Review Letters, 2004, 93 (12) : 126103. 被引量:1

二级参考文献31

  • 1Wong E W, Sheehan P E, Lieber C M. Nanobeam mechanics: elasticity, strength, and toughness of nanorods andnanotubes[J]. Science, 1997, 277 (5334):1 971- 1 975. 被引量:1
  • 2Hasmy A, Medina E. Thickness induced structural transition in suspended fcc metal nanofilms[J]. Physical Review Letters, 2002, 88(9):096103(4). 被引量:1
  • 3Landman U, Luedtke W D, Salisbury B E, et al. Reversible manipulations of room temperature mechanical and quantum transport properties in nanowire junctions [J]. Physical Review Letters, 1996, 77 (7): 1 362- 1 365. 被引量:1
  • 4Kondo Y, Takayanagi K. Gold nanobridge stabilized by surface structure[J]. Physical Review Letters, 1997, 79 (18) :3 455-3 458. 被引量:1
  • 5Kondo Y, Takayanagi K. Synthesis and characterization of helical multi-shell gold nanowires[J]. Science, 2000, 289 (5479) : 606-608. 被引量:1
  • 6Da Silva E Z, Da Silva A J R, Fazzio A. How do gold nanowires break[J]. Physical Review Letters, 2001, 87 (25):256102(4). 被引量:1
  • 7Wu B, Heidelberg A, Boland J J. Mechanical properties of ultrahigh-strength gold nanowires[J ]. Nature Materials, 2005(4) :525-529. 被引量:1
  • 8Park H S, Zimmerman J A. Stable nanobridge formation in [ 110 ] gold nanowires under tensile deformation [ J ]. Scripta Materialia, 2006, 54(6):1 127-1 132. 被引量:1
  • 9Rabkin E, Nam H S, Srolovitz D J. Atomistic simulation of the deformation of gold nanopillars[J]. Acta Materialia, 2007, 55(6) :2 085-2 099. 被引量:1
  • 10Hakkinen H, Manninen M. Force fluctuations and localized states at point contacts[J]. Europhysics Letters, 1998, 44(1) :80-84. 被引量:1

共引文献2

同被引文献10

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部