The measurement of the middle-convex and varying ellipse profile of a pistonskirt is a key technology because of its complex profile and high precision. Generally, a piston ismeasured on special device after it is mac...The measurement of the middle-convex and varying ellipse profile of a pistonskirt is a key technology because of its complex profile and high precision. Generally, a piston ismeasured on special device after it is machined. High accuracy can be achieved through this off-linemeasurement, but the result diverges from the actual dimension. Therefore, a no-contact in-sitemeasurement system is proposed. A laser displacement meter is used to measure the profile of thepiston skirt. A computer connected to the meter is used to process the measured data. A regressionanalysis method is used to process the ellipse section data. The method of moving average is used toprocess the middle-convex curve data. By using the given system, high measurement accuracy can begained, and the production requirement is met.展开更多
In multicellular and even single-celled organisms,individual components are interconnected at multiscale levels to produce enormously complex biological networks that help these systems maintain homeostasis for develo...In multicellular and even single-celled organisms,individual components are interconnected at multiscale levels to produce enormously complex biological networks that help these systems maintain homeostasis for development and environmental adaptation.Systems biology studies initially adopted network analysis to explore how relationships between individual components give rise to complex biological processes.Network analysis has been applied to dissect the complex connectivity of mammalian brains across different scales in time and space in The Human Brain Project.In plant science,network analysis has similarly been applied to study the connectivity of plant components at the molecular,subcellular,cellular,organic,and organism levels.Analysis of these multiscale networks contributes to our understanding of how genotype determines phenotype.In this review,we summarized the theoretical framework of plant multiscale networks and introduced studies investigating plant networks by various experimental and computational modalities.We next discussed the currently available analytic methodologies and multi-level imaging techniques used to map multiscale networks in plants.Finally,we highlighted some of the technical challenges and key questions remaining to be addressed in this emerging field.展开更多
Photocatalytic CO_(2)conversion efficiency is hampered by the rapid recombination of photogenerated charge carriers.It is effective to suppress the recombination by constructing cocatalysts on photocatalysts with high...Photocatalytic CO_(2)conversion efficiency is hampered by the rapid recombination of photogenerated charge carriers.It is effective to suppress the recombination by constructing cocatalysts on photocatalysts with high-quality interfacial contact.Herein,we develop a novel strategy to in-situ grow ultrathin/V-doped graphene(NG)layer on TiO_(2) hollow spheres(HS) with large area and intimate interfacial contact via a chemical vapor deposition(CVD).The optimized TiO^(2)/NG HS nanocomposite achieves total CO_(2)conversion rates(the sum yield of CO,CH_(3)OH and CH_(4))of 18.11μmol·g^(-1)h^(-1),which is about 4.6 times higher than blank T1O_(2)HS.Experimental results demonstrate that intimate interfacial contact and abundant pyridinic N sites can effectively facilitate photogenerated charge carrier separation and transport,realizing enhanced photocatalytic CO_(2)reduction performance.In addition,this work provides an effective strategy for in-situ construction of graphene-based photocatalysts for highly efficient photocatalytic CO_(2)conversion.展开更多
基金This project is supported by the Fifth China Technology Innovational Items (No.01-101-19-13).
文摘The measurement of the middle-convex and varying ellipse profile of a pistonskirt is a key technology because of its complex profile and high precision. Generally, a piston ismeasured on special device after it is machined. High accuracy can be achieved through this off-linemeasurement, but the result diverges from the actual dimension. Therefore, a no-contact in-sitemeasurement system is proposed. A laser displacement meter is used to measure the profile of thepiston skirt. A computer connected to the meter is used to process the measured data. A regressionanalysis method is used to process the ellipse section data. The method of moving average is used toprocess the middle-convex curve data. By using the given system, high measurement accuracy can begained, and the production requirement is met.
基金supported by the National Natural Science Foundation of China(31530084,32000558,32000483,and31800504)the Programme of Introducing Talents of Discipline to Universities(111 project,B13007)the China Postdoctoral Science Foundation Grant(2019M660494)。
文摘In multicellular and even single-celled organisms,individual components are interconnected at multiscale levels to produce enormously complex biological networks that help these systems maintain homeostasis for development and environmental adaptation.Systems biology studies initially adopted network analysis to explore how relationships between individual components give rise to complex biological processes.Network analysis has been applied to dissect the complex connectivity of mammalian brains across different scales in time and space in The Human Brain Project.In plant science,network analysis has similarly been applied to study the connectivity of plant components at the molecular,subcellular,cellular,organic,and organism levels.Analysis of these multiscale networks contributes to our understanding of how genotype determines phenotype.In this review,we summarized the theoretical framework of plant multiscale networks and introduced studies investigating plant networks by various experimental and computational modalities.We next discussed the currently available analytic methodologies and multi-level imaging techniques used to map multiscale networks in plants.Finally,we highlighted some of the technical challenges and key questions remaining to be addressed in this emerging field.
文摘Photocatalytic CO_(2)conversion efficiency is hampered by the rapid recombination of photogenerated charge carriers.It is effective to suppress the recombination by constructing cocatalysts on photocatalysts with high-quality interfacial contact.Herein,we develop a novel strategy to in-situ grow ultrathin/V-doped graphene(NG)layer on TiO_(2) hollow spheres(HS) with large area and intimate interfacial contact via a chemical vapor deposition(CVD).The optimized TiO^(2)/NG HS nanocomposite achieves total CO_(2)conversion rates(the sum yield of CO,CH_(3)OH and CH_(4))of 18.11μmol·g^(-1)h^(-1),which is about 4.6 times higher than blank T1O_(2)HS.Experimental results demonstrate that intimate interfacial contact and abundant pyridinic N sites can effectively facilitate photogenerated charge carrier separation and transport,realizing enhanced photocatalytic CO_(2)reduction performance.In addition,this work provides an effective strategy for in-situ construction of graphene-based photocatalysts for highly efficient photocatalytic CO_(2)conversion.