The network switches in the data plane of Software Defined Networking (SDN) are empowered by an elementary process, in which enormous number of packets which resemble big volumes of data are classified into specific f...The network switches in the data plane of Software Defined Networking (SDN) are empowered by an elementary process, in which enormous number of packets which resemble big volumes of data are classified into specific flows by matching them against a set of dynamic rules. This basic process accelerates the processing of data, so that instead of processing singular packets repeatedly, corresponding actions are performed on corresponding flows of packets. In this paper, first, we address limitations on a typical packet classification algorithm like Tuple Space Search (TSS). Then, we present a set of different scenarios to parallelize it on different parallel processing platforms, including Graphics Processing Units (GPUs), clusters of Central Processing Units (CPUs), and hybrid clusters. Experimental results show that the hybrid cluster provides the best platform for parallelizing packet classification algorithms, which promises the average throughput rate of 4.2 Million packets per second (Mpps). That is, the hybrid cluster produced by the integration of Compute Unified Device Architecture (CUDA), Message Passing Interface (MPI), and OpenMP programming model could classify 0.24 million packets per second more than the GPU cluster scheme. Such a packet classifier satisfies the required processing speed in the programmable network systems that would be used to communicate big medical data.展开更多
The scenario simulation analysis of water environmental emergencies is very important for risk prevention and control,and emergency response.To quickly and accurately simulate the transport and diffusion process of hi...The scenario simulation analysis of water environmental emergencies is very important for risk prevention and control,and emergency response.To quickly and accurately simulate the transport and diffusion process of high-intensity pollutants during sudden environmental water pollution events,in this study,a high-precision pollution transport and diffusion model for unstructured grids based on Compute Unified Device Architecture(CUDA)is proposed.The finite volume method of a total variation diminishing limiter with the Kong proposed r-factor is used to reduce numerical diffusion and oscillation errors in the simulation of pollutants under sharp concentration conditions,and graphics processing unit acceleration technology is used to improve computational efficiency.The advection diffusion process of the model is verified numerically using two benchmark cases,and the efficiency of the model is evaluated using an engineering example.The results demonstrate that the model perform well in the simulation of material transport in the presence of sharp concentration.Additionally,it has high computational efficiency.The acceleration ratio is 46 times the single-thread acceleration effect of the original model.The efficiency of the accelerated model meet the requirements of an engineering application,and the rapid early warning and assessment of water pollution accidents is achieved.展开更多
A tremendous amount of data has been generated by global financial markets everyday,and such time-series data needs to be analyzed in real time to explore its potential value.In recent years,we have witnessed the succ...A tremendous amount of data has been generated by global financial markets everyday,and such time-series data needs to be analyzed in real time to explore its potential value.In recent years,we have witnessed the successful adoption of machine learning models on financial data,where the importance of accuracy and timeliness demands highly effective computing frameworks.However,traditional financial time-series data processing frameworks have shown performance degradation and adaptation issues,such as the outlier handling with stock suspension in Pandas and TA-Lib.In this paper,we propose HXPY,a high-performance data processing package with a C++/Python interface for financial time-series data.HXPY supports miscellaneous acceleration techniques such as the streaming algorithm,the vectorization instruction set,and memory optimization,together with various functions such as time window functions,group operations,down-sampling operations,cross-section operations,row-wise or column-wise operations,shape transformations,and alignment functions.The results of benchmark and incremental analysis demonstrate the superior performance of HXPY compared with its counterparts.From MiBs to GiBs data,HXPY significantly outperforms other in-memory dataframe computing rivals even up to hundreds of times.展开更多
A graphics processing unit(GPU)-accelerated discontinuous Galerkin(DG)method is presented for solving two-dimensional laminar flows.The DG method is ported from central processing unit to GPU in a way of achieving GPU...A graphics processing unit(GPU)-accelerated discontinuous Galerkin(DG)method is presented for solving two-dimensional laminar flows.The DG method is ported from central processing unit to GPU in a way of achieving GPU speedup through programming under the compute unified device architecture(CUDA)model.The CUDA kernel subroutines are designed to meet with the requirement of high order computing of DG method.The corresponding data structures are constructed in component-wised manners and the thread hierarchy is manipulated in cell-wised or edge-wised manners associated with related integrals involved in solving laminar Navier-Stokes equations,in which the inviscid and viscous flux terms are computed by the local lax-Friedrichs scheme and the second scheme of Bassi&Rebay,respectively.A strong stability preserving Runge-Kutta scheme is then used for time marching of numerical solutions.The resulting GPU-accelerated DG method is first validated by the traditional Couette flow problems with different mesh sizes associated with different orders of approximation,which shows that the orders of convergence,as expected,can be achieved.The numerical simulations of the typical flows over a circular cylinder or a NACA 0012 airfoil are then carried out,and the results are further compared with the analytical solutions or available experimental and numerical values reported in the literature,as well as with a performance analysis of the developed code in terms of GPU speedups.This shows that the costs of computing time of the presented test cases are significantly reduced without losing accuracy,while impressive speedups up to 69.7 times are achieved by the present method in comparison to its CPU counterpart.展开更多
Numerical treatment of engineering application problems often eventually results in a solution of systems of linear or nonlinear equations.The solution process using digital computational devices usually takes tremend...Numerical treatment of engineering application problems often eventually results in a solution of systems of linear or nonlinear equations.The solution process using digital computational devices usually takes tremendous time due to the extremely large size encountered in most real-world engineering applications.So,practical solvers for systems of linear and nonlinear equations based on multi graphic process units(GPUs)are proposed in order to accelerate the solving process.In the linear and nonlinear solvers,the preconditioned bi-conjugate gradient stable(PBi-CGstab)method and the Inexact Newton method are used to achieve the fast and stable convergence behavior.Multi-GPUs are utilized to obtain more data storage that large size problems need.展开更多
As an established spatial analytical tool,Geographically Weighted Regression(GWR)has been applied across a variety of disciplines.However,its usage can be challenging for large datasets,which are increasingly prevalen...As an established spatial analytical tool,Geographically Weighted Regression(GWR)has been applied across a variety of disciplines.However,its usage can be challenging for large datasets,which are increasingly prevalent in today’s digital world.In this study,we propose two high-performance R solutions for GWR via Multi-core Parallel(MP)and Compute Unified Device Architecture(CUDA)techniques,respectively GWR-MP and GWR-CUDA.We compared GWR-MP and GWR-CUDA with three existing solutions available in Geographically Weighted Models(GWmodel),Multi-scale GWR(MGWR)and Fast GWR(FastGWR).Results showed that all five solutions perform differently across varying sample sizes,with no single solution a clear winner in terms of computational efficiency.Specifically,solutions given in GWmodel and MGWR provided acceptable computational costs for GWR studies with a relatively small sample size.For a large sample size,GWR-MP and FastGWR provided coherent solutions on a Personal Computer(PC)with a common multi-core configuration,GWR-MP provided more efficient computing capacity for each core or thread than FastGWR.For cases when the sample size was very large,and for these cases only,GWR-CUDA provided the most efficient solution,but should note its I/O cost with small samples.In summary,GWR-MP and GWR-CUDA provided complementary high-performance R solutions to existing ones,where for certain data-rich GWR studies,they should be preferred.展开更多
The Moving Particle Semi-implicit (MPS) method performs well in simulating violent free surface flow and hence becomes popular in the area of fluid flow simulation. However, the implementations of searching neighbouri...The Moving Particle Semi-implicit (MPS) method performs well in simulating violent free surface flow and hence becomes popular in the area of fluid flow simulation. However, the implementations of searching neighbouring particles and solving the large sparse matrix equations (Poisson-type equation) are very time-consuming. In order to utilize the tremendous power of parallel computation of Graphics Processing Units (GPU), this study has developed a GPU-based MPS model employing the Compute Unified Device Architecture (CUDA) on NVIDIA GTX 280. The efficient neighbourhood particle searching is done through an indirect method and the Poisson-type pressure equation is solved by the Bi-Conjugate Gradient (BiCG) method. Four different optimization levels for the present general parallel GPU-based MPS model are demonstrated. In addition, the elaborate optimization of GPU code is also discussed. A benchmark problem of dam-breaking flow is simulated using both codes of the present GPU-based MPS and the original CPU-based MPS. The comparisons between them show that the GPU-based MPS model outperforms 26 times the traditional CPU model.展开更多
The study of induced polarization (IP) information extraction from magnetotelluric (MT) sounding data is of great and practical significance to the exploitation of deep mineral, oil and gas resources. The linear i...The study of induced polarization (IP) information extraction from magnetotelluric (MT) sounding data is of great and practical significance to the exploitation of deep mineral, oil and gas resources. The linear inversion method, which has been given priority in previous research on the IP information extraction method, has three main problems as follows: 1) dependency on the initial model, 2) easily falling into the local minimum, and 3) serious non-uniqueness of solutions. Taking the nonlinearity and nonconvexity of IP information extraction into consideration, a two-stage CO-PSO minimum structure inversion method using compute unified distributed architecture (CUDA) is proposed. On one hand, a novel Cauchy oscillation particle swarm optimization (CO-PSO) algorithm is applied to extract nonlinear IP information from MT sounding data, which is implemented as a parallel algorithm within CUDA computing architecture; on the other hand, the impact of the polarizability on the observation data is strengthened by introducing a second stage inversion process, and the regularization parameter is applied in the fitness function of PSO algorithm to solve the problem of multi-solution in inversion. The inversion simulation results of polarization layers in different strata of various geoelectric models show that the smooth models of resistivity and IP parameters can be obtained by the proposed algorithm, the results of which are relatively stable and accurate. The experiment results added with noise indicate that this method is robust to Gaussian white noise. Compared with the traditional PSO and GA algorithm, the proposed algorithm has more efficiency and better inversion results.展开更多
Compared with the conventional X-ray absorption imaging, the X-ray phase-contrast imaging shows higher contrast on samples with low attenuation coefficient like blood vessels and soft tissues. Among the modalities of ...Compared with the conventional X-ray absorption imaging, the X-ray phase-contrast imaging shows higher contrast on samples with low attenuation coefficient like blood vessels and soft tissues. Among the modalities of phase-contrast imaging, the grating-based phase contrast imaging has been widely accepted owing to the advantage of wide range of sample selections and exemption of coherent source. However, the downside is the substantially larger amount of data generated from the phase-stepping method which slows down the reconstruction process. Graphic processing unit(GPU) has the advantage of allowing parallel computing which is very useful for large quantity data processing. In this paper, a compute unified device architecture(CUDA) C program based on GPU is introduced to accelerate the phase retrieval and filtered back projection(FBP) algorithm for grating-based tomography. Depending on the size of the data, the CUDA C program shows different amount of speed-up over the standard C program on the same Visual Studio 2010 platform. Meanwhile, the speed-up ratio increases as the size of data increases.展开更多
Core shooting process is the most widely used technique to make sand cores and it plays an important role in the quality of sand cores. Although numerical simulation can hopefully optimize the core shooting process, r...Core shooting process is the most widely used technique to make sand cores and it plays an important role in the quality of sand cores. Although numerical simulation can hopefully optimize the core shooting process, research on numerical simulation of the core shooting process is very limited. Based on a two-fluid model(TFM) and a kinetic-friction constitutive correlation, a program for 3D numerical simulation of the core shooting process has been developed and achieved good agreements with in-situ experiments. To match the needs of engineering applications, a graphics processing unit(GPU) has also been used to improve the calculation efficiency. The parallel algorithm based on the Compute Unified Device Architecture(CUDA) platform can significantly decrease computing time by multi-threaded GPU. In this work, the program accelerated by CUDA parallelization method was developed and the accuracy of the calculations was ensured by comparing with in-situ experimental results photographed by a high-speed camera. The design and optimization of the parallel algorithm were discussed. The simulation result of a sand core test-piece indicated the improvement of the calculation efficiency by GPU. The developed program has also been validated by in-situ experiments with a transparent core-box, a high-speed camera, and a pressure measuring system. The computing time of the parallel program was reduced by nearly 95% while the simulation result was still quite consistent with experimental data. The GPU parallelization method can successfully solve the problem of low computational efficiency of the 3D sand shooting simulation program, and thus the developed GPU program is appropriate for engineering applications.展开更多
Based on the finite element method(FEM)in the frequency domain and particle-in-cell approach in the time domain,a hybrid domain multipactor threshold prediction algorithm is proposed in this paper.The proposed algorit...Based on the finite element method(FEM)in the frequency domain and particle-in-cell approach in the time domain,a hybrid domain multipactor threshold prediction algorithm is proposed in this paper.The proposed algorithm has the advantages of the frequency domain and the time domain algorithms at the same time in terms of high computational accuracy and considerable computational efficiency.In addition,the compute unified device architecture(CUDA)acceleration technique also can be employed to further enhance its simulation efficiency.Numerical examples are carried out to demonstrate the effectiveness of the proposed algorithm.The results indicate that the multipactor threshold can be accurately predicted and the computational efficiency can be improved.展开更多
文摘The network switches in the data plane of Software Defined Networking (SDN) are empowered by an elementary process, in which enormous number of packets which resemble big volumes of data are classified into specific flows by matching them against a set of dynamic rules. This basic process accelerates the processing of data, so that instead of processing singular packets repeatedly, corresponding actions are performed on corresponding flows of packets. In this paper, first, we address limitations on a typical packet classification algorithm like Tuple Space Search (TSS). Then, we present a set of different scenarios to parallelize it on different parallel processing platforms, including Graphics Processing Units (GPUs), clusters of Central Processing Units (CPUs), and hybrid clusters. Experimental results show that the hybrid cluster provides the best platform for parallelizing packet classification algorithms, which promises the average throughput rate of 4.2 Million packets per second (Mpps). That is, the hybrid cluster produced by the integration of Compute Unified Device Architecture (CUDA), Message Passing Interface (MPI), and OpenMP programming model could classify 0.24 million packets per second more than the GPU cluster scheme. Such a packet classifier satisfies the required processing speed in the programmable network systems that would be used to communicate big medical data.
基金supported by the National Key Research and Development Program of China(Grant No.2022YFC3202004)the National Natural Science Foundation of China(Grant No.51979105).
文摘The scenario simulation analysis of water environmental emergencies is very important for risk prevention and control,and emergency response.To quickly and accurately simulate the transport and diffusion process of high-intensity pollutants during sudden environmental water pollution events,in this study,a high-precision pollution transport and diffusion model for unstructured grids based on Compute Unified Device Architecture(CUDA)is proposed.The finite volume method of a total variation diminishing limiter with the Kong proposed r-factor is used to reduce numerical diffusion and oscillation errors in the simulation of pollutants under sharp concentration conditions,and graphics processing unit acceleration technology is used to improve computational efficiency.The advection diffusion process of the model is verified numerically using two benchmark cases,and the efficiency of the model is evaluated using an engineering example.The results demonstrate that the model perform well in the simulation of material transport in the presence of sharp concentration.Additionally,it has high computational efficiency.The acceleration ratio is 46 times the single-thread acceleration effect of the original model.The efficiency of the accelerated model meet the requirements of an engineering application,and the rapid early warning and assessment of water pollution accidents is achieved.
文摘A tremendous amount of data has been generated by global financial markets everyday,and such time-series data needs to be analyzed in real time to explore its potential value.In recent years,we have witnessed the successful adoption of machine learning models on financial data,where the importance of accuracy and timeliness demands highly effective computing frameworks.However,traditional financial time-series data processing frameworks have shown performance degradation and adaptation issues,such as the outlier handling with stock suspension in Pandas and TA-Lib.In this paper,we propose HXPY,a high-performance data processing package with a C++/Python interface for financial time-series data.HXPY supports miscellaneous acceleration techniques such as the streaming algorithm,the vectorization instruction set,and memory optimization,together with various functions such as time window functions,group operations,down-sampling operations,cross-section operations,row-wise or column-wise operations,shape transformations,and alignment functions.The results of benchmark and incremental analysis demonstrate the superior performance of HXPY compared with its counterparts.From MiBs to GiBs data,HXPY significantly outperforms other in-memory dataframe computing rivals even up to hundreds of times.
基金partially supported by the National Natural Science Foundation of China(No.11972189)the Natural Science Foundation of Jiangsu Province(No.BK20190391)+1 种基金the Natural Science Foundation of Anhui Province(No.1908085QF260)the Priority Academic Program Development of Jiangsu Higher Education Institutions。
文摘A graphics processing unit(GPU)-accelerated discontinuous Galerkin(DG)method is presented for solving two-dimensional laminar flows.The DG method is ported from central processing unit to GPU in a way of achieving GPU speedup through programming under the compute unified device architecture(CUDA)model.The CUDA kernel subroutines are designed to meet with the requirement of high order computing of DG method.The corresponding data structures are constructed in component-wised manners and the thread hierarchy is manipulated in cell-wised or edge-wised manners associated with related integrals involved in solving laminar Navier-Stokes equations,in which the inviscid and viscous flux terms are computed by the local lax-Friedrichs scheme and the second scheme of Bassi&Rebay,respectively.A strong stability preserving Runge-Kutta scheme is then used for time marching of numerical solutions.The resulting GPU-accelerated DG method is first validated by the traditional Couette flow problems with different mesh sizes associated with different orders of approximation,which shows that the orders of convergence,as expected,can be achieved.The numerical simulations of the typical flows over a circular cylinder or a NACA 0012 airfoil are then carried out,and the results are further compared with the analytical solutions or available experimental and numerical values reported in the literature,as well as with a performance analysis of the developed code in terms of GPU speedups.This shows that the costs of computing time of the presented test cases are significantly reduced without losing accuracy,while impressive speedups up to 69.7 times are achieved by the present method in comparison to its CPU counterpart.
文摘Numerical treatment of engineering application problems often eventually results in a solution of systems of linear or nonlinear equations.The solution process using digital computational devices usually takes tremendous time due to the extremely large size encountered in most real-world engineering applications.So,practical solvers for systems of linear and nonlinear equations based on multi graphic process units(GPUs)are proposed in order to accelerate the solving process.In the linear and nonlinear solvers,the preconditioned bi-conjugate gradient stable(PBi-CGstab)method and the Inexact Newton method are used to achieve the fast and stable convergence behavior.Multi-GPUs are utilized to obtain more data storage that large size problems need.
基金supported by National Key Research and Development Program of China[grant num-ber 2021YFB3900904]the National Natural Science Foundation of China[grant numbers 42071368,U2033216,41871287].
文摘As an established spatial analytical tool,Geographically Weighted Regression(GWR)has been applied across a variety of disciplines.However,its usage can be challenging for large datasets,which are increasingly prevalent in today’s digital world.In this study,we propose two high-performance R solutions for GWR via Multi-core Parallel(MP)and Compute Unified Device Architecture(CUDA)techniques,respectively GWR-MP and GWR-CUDA.We compared GWR-MP and GWR-CUDA with three existing solutions available in Geographically Weighted Models(GWmodel),Multi-scale GWR(MGWR)and Fast GWR(FastGWR).Results showed that all five solutions perform differently across varying sample sizes,with no single solution a clear winner in terms of computational efficiency.Specifically,solutions given in GWmodel and MGWR provided acceptable computational costs for GWR studies with a relatively small sample size.For a large sample size,GWR-MP and FastGWR provided coherent solutions on a Personal Computer(PC)with a common multi-core configuration,GWR-MP provided more efficient computing capacity for each core or thread than FastGWR.For cases when the sample size was very large,and for these cases only,GWR-CUDA provided the most efficient solution,but should note its I/O cost with small samples.In summary,GWR-MP and GWR-CUDA provided complementary high-performance R solutions to existing ones,where for certain data-rich GWR studies,they should be preferred.
基金supported by the National Natural Science Foundation of China with Grant No. 10772040, 50921001 and 50909016The financial support from the Important National Science & Technology Specific Projects of China with Grant No. 2008ZX05026-02 is also appreciated
文摘The Moving Particle Semi-implicit (MPS) method performs well in simulating violent free surface flow and hence becomes popular in the area of fluid flow simulation. However, the implementations of searching neighbouring particles and solving the large sparse matrix equations (Poisson-type equation) are very time-consuming. In order to utilize the tremendous power of parallel computation of Graphics Processing Units (GPU), this study has developed a GPU-based MPS model employing the Compute Unified Device Architecture (CUDA) on NVIDIA GTX 280. The efficient neighbourhood particle searching is done through an indirect method and the Poisson-type pressure equation is solved by the Bi-Conjugate Gradient (BiCG) method. Four different optimization levels for the present general parallel GPU-based MPS model are demonstrated. In addition, the elaborate optimization of GPU code is also discussed. A benchmark problem of dam-breaking flow is simulated using both codes of the present GPU-based MPS and the original CPU-based MPS. The comparisons between them show that the GPU-based MPS model outperforms 26 times the traditional CPU model.
基金Projects(41604117,41204054)supported by the National Natural Science Foundation of ChinaProjects(20110490149,2015M580700)supported by the Research Fund for the Doctoral Program of Higher Education,China+1 种基金Project(2015zzts064)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(16B147)supported by the Scientific Research Fund of Hunan Provincial Education Department,China
文摘The study of induced polarization (IP) information extraction from magnetotelluric (MT) sounding data is of great and practical significance to the exploitation of deep mineral, oil and gas resources. The linear inversion method, which has been given priority in previous research on the IP information extraction method, has three main problems as follows: 1) dependency on the initial model, 2) easily falling into the local minimum, and 3) serious non-uniqueness of solutions. Taking the nonlinearity and nonconvexity of IP information extraction into consideration, a two-stage CO-PSO minimum structure inversion method using compute unified distributed architecture (CUDA) is proposed. On one hand, a novel Cauchy oscillation particle swarm optimization (CO-PSO) algorithm is applied to extract nonlinear IP information from MT sounding data, which is implemented as a parallel algorithm within CUDA computing architecture; on the other hand, the impact of the polarizability on the observation data is strengthened by introducing a second stage inversion process, and the regularization parameter is applied in the fitness function of PSO algorithm to solve the problem of multi-solution in inversion. The inversion simulation results of polarization layers in different strata of various geoelectric models show that the smooth models of resistivity and IP parameters can be obtained by the proposed algorithm, the results of which are relatively stable and accurate. The experiment results added with noise indicate that this method is robust to Gaussian white noise. Compared with the traditional PSO and GA algorithm, the proposed algorithm has more efficiency and better inversion results.
基金the National Basic Research Program(973) of China(No.2010CB834300)the Biomedical Engineering Cross-Research Fund of Shanghai Jiao Tong University(Nos.YG2011MS49 and YG2013MS65)
文摘Compared with the conventional X-ray absorption imaging, the X-ray phase-contrast imaging shows higher contrast on samples with low attenuation coefficient like blood vessels and soft tissues. Among the modalities of phase-contrast imaging, the grating-based phase contrast imaging has been widely accepted owing to the advantage of wide range of sample selections and exemption of coherent source. However, the downside is the substantially larger amount of data generated from the phase-stepping method which slows down the reconstruction process. Graphic processing unit(GPU) has the advantage of allowing parallel computing which is very useful for large quantity data processing. In this paper, a compute unified device architecture(CUDA) C program based on GPU is introduced to accelerate the phase retrieval and filtered back projection(FBP) algorithm for grating-based tomography. Depending on the size of the data, the CUDA C program shows different amount of speed-up over the standard C program on the same Visual Studio 2010 platform. Meanwhile, the speed-up ratio increases as the size of data increases.
基金supported by the National Natural Science Foundation of China(51575304)
文摘Core shooting process is the most widely used technique to make sand cores and it plays an important role in the quality of sand cores. Although numerical simulation can hopefully optimize the core shooting process, research on numerical simulation of the core shooting process is very limited. Based on a two-fluid model(TFM) and a kinetic-friction constitutive correlation, a program for 3D numerical simulation of the core shooting process has been developed and achieved good agreements with in-situ experiments. To match the needs of engineering applications, a graphics processing unit(GPU) has also been used to improve the calculation efficiency. The parallel algorithm based on the Compute Unified Device Architecture(CUDA) platform can significantly decrease computing time by multi-threaded GPU. In this work, the program accelerated by CUDA parallelization method was developed and the accuracy of the calculations was ensured by comparing with in-situ experimental results photographed by a high-speed camera. The design and optimization of the parallel algorithm were discussed. The simulation result of a sand core test-piece indicated the improvement of the calculation efficiency by GPU. The developed program has also been validated by in-situ experiments with a transparent core-box, a high-speed camera, and a pressure measuring system. The computing time of the parallel program was reduced by nearly 95% while the simulation result was still quite consistent with experimental data. The GPU parallelization method can successfully solve the problem of low computational efficiency of the 3D sand shooting simulation program, and thus the developed GPU program is appropriate for engineering applications.
基金This work was supported by the National Natural Science Foundation of China(61571022,61971022)the National Key laboratory Foundation(HTKJ2019KI504013,61424020305).
文摘Based on the finite element method(FEM)in the frequency domain and particle-in-cell approach in the time domain,a hybrid domain multipactor threshold prediction algorithm is proposed in this paper.The proposed algorithm has the advantages of the frequency domain and the time domain algorithms at the same time in terms of high computational accuracy and considerable computational efficiency.In addition,the compute unified device architecture(CUDA)acceleration technique also can be employed to further enhance its simulation efficiency.Numerical examples are carried out to demonstrate the effectiveness of the proposed algorithm.The results indicate that the multipactor threshold can be accurately predicted and the computational efficiency can be improved.