期刊文献+

基于CUDA的高分辨率数字视频图像配准快速实现 被引量:27

Quick realization of CUDA-based registration of high-resolution digital video images
下载PDF
导出
摘要 高分辨率数字视频图像数据量巨大,基于SIFT图像配准算法在CPU上实现时用时巨大。针对此,首先对配准算法中3个最耗时的部分:SIFT特征提取;SIFT特征匹配;RANSAC算法提纯匹配点对,求解变换模型参数。对此展开重点研究,研究其并行算法。然后基于CUDA并行快速实现高分辨率数字视频图像配准。实验结果表明:基于SIFT图像配准算法在CPU与CUDA上实现,在配准效果相近时,在CUDA上实现的处理速度比在CPU上实现的处理速度提高了100多倍,并且随着图像像素数的增加加速比有显著提高。 High-resolution digital video image contains a huge amount of data, and the ( scale invariant feature trans- form) SIFT based image registration algorithm achieved on CPU costs enormous amount of time. Aiming at this prob- lem, firstly we emphatically studied the parallel algorithms of the three most time-consuming parts in the image regis- tration algorithm: SIFT feature extraction; SIFT feature matching; and random sample consensus(RANSAC) algo- rithm for purifying matching point pair and solving transformation model parameters. Then, the high-resolution digital video image registration was achieved quickly and in parallel based on compute unified device architecture(CUDA). The experiment results show that for the SIFT-based image registration algorithm implemented on CPU and CUDA, the processing speed for CUDA is over 100 times faster than that for CPU when the registration results are similar, and the acceleration ratio improves significantly while the number of the image pixels increases.
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2014年第2期380-386,共7页 Chinese Journal of Scientific Instrument
基金 航空科学基金(20135152049) 南京航空航天大学基本科研业务费专项科研项目(NN2012083 NS2010214 NP2011048)资助
关键词 图像配准 高分辨率 数字视频 CUDA image registration high-resolution digital video compute unified device architecture (CUDA)
  • 相关文献

参考文献16

二级参考文献68

  • 1赵录刚,吴成柯.基于随机抽样一致性的多平面区域检测算法[J].计算机应用,2008,28(S2):154-157. 被引量:6
  • 2陈付幸,王润生.基于预检验的快速随机抽样一致性算法[J].软件学报,2005,16(8):1431-1437. 被引量:106
  • 3STAUFFER C, GRIMSON W. Learning patterns of acitivty using real-time tracking[J]. IEEE Trans on PAMI, 2000,22(8): 747-757. 被引量:1
  • 4TAO H,SAWHNEY H, KUMAR R. Object tracking with bayesian estimation of dynamic layer representations[J]. IEEE Trans on PAMI, 2002,24 (1) : 75-89. 被引量:1
  • 5COLLINS R, FUJIYOSHI A, KANADE T. Algorithms for cooperative multisensor surveillance[C]// Proceedings of the IEEE. (Supp. 1) : IEEE, 2001,89 (10):1456-1477. 被引量:1
  • 6KANADE T, COLLINS R, LIPTON A, et al. Advances in cooperative multi-sensor video surveillance [C]// Proceedings of DARPA Image Understanding Workshop. Monterey: (Supp. 1), 1998,1:3-24. 被引量:1
  • 7CHANG T S, GONG S G. Tracking multiple people with a multi-camera system[C]//Proceedings of IEEE Workshop on Multi-Object Tracking. Washington.. IEEE, 2001: 19. 被引量:1
  • 8UTSUMI A, OHYA J. Multiple-camera-based human tracking using non-synchronous observations [C]// Proceedings of 4th ACCV. Taipei: IEEE, 2000: 1034- 1039. 被引量:1
  • 9KELLY P, KATKERE A, KURAMURA D, et al. An architecture for multiple perspective interactive video [C]// Proceedings of the third ACM international conference on Multimedia. New York: ACM, 1995: 201-212. 被引量:1
  • 10BLACK J, ELLIS T. Multiple camera image tracking [C]// Proceedings of CVPR Kauai:IEEE, 2001. 被引量:1

共引文献111

同被引文献239

引证文献27

二级引证文献203

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部