Aim: To explore the effect of androgen receptor (AR) on the expression of the cell cycle-related genes, such as CDKNIA and BTG1, in prostate cancer cell line LNCaP. Methods: After AR antagonist flutamide treatment...Aim: To explore the effect of androgen receptor (AR) on the expression of the cell cycle-related genes, such as CDKNIA and BTG1, in prostate cancer cell line LNCaP. Methods: After AR antagonist flutamide treatment and confirmation of its effect by phase contrast microscope and flow cytometry, the differential expression of the cell cycle-related genes was analyzed by a cDNA microarray. The flutamide treated cells were set as the experimental group and the LNCaP cells as the control. We labeled cDNA probes of the experimental group and control group with Cy5 and Cy3 dyes, respectively, through reverse transcription. Then we hybridized the cDNA probes with cDNA microarrays, which contained 8 126 unique human cDNA sequences and the chip was scanned to get the fluorescent values of Cy5 and Cy3 on each spot. After primary analysis, reverse transcription polymerase chain reaction (RT- PCR) tests were carried out to confirm the results of the chips. Results:After AR antagonist flutamide treatment, three hundred and twenty-six genes (3.93 %) expressed differentially, 97 down-regulated and 219 up-regulated. Among them, eight up-regulated genes might be cell cycle-related, namely CDCIO, NRAS, BTG1, Wee1, CLK3, DKFZP564A122, CDKNIA and BTG2. The CDKNIA and BTG1 gene mRNA expression was confirmed to be higher in the experimental group by RT-PCR, while p53 mRNA expression had no significant changes. Conclusion: Flutamide treatment might up-regulate CDKN1A and BTG1 expression in prostate cancer cells. The protein expressions of CDKN1A and BTG1 play an important role in inhibiting the proliferation of cancer cells. CDKN1A has a great impact on the cell cycle of prostate cancer cells and may play a role in the cancer cells in a p53-independent pathway. The prostate cancer cells might affect the cell cycle-related genes by activating AR and thus break the cell cycle control.展开更多
The B cells translocation gene 1 (BTG1) is a member of the BTG/TOB family of anti-proliferative genes, which have recently emerged as important regulators of cell growth and differentiation among vertebrates. Here, ...The B cells translocation gene 1 (BTG1) is a member of the BTG/TOB family of anti-proliferative genes, which have recently emerged as important regulators of cell growth and differentiation among vertebrates. Here, for the first time we cloned the full-length eDNA sequence of Hyriopsis schlegelii (Hs-BTG1), an economically important freshwater shellfish and potential indicator of environmental heavy metal pollution, for the first time. Using rapid amplification of eDNA ends (RACE) together with splicing the EST sequence from a haemocyte eDNA library, we found that Hs-BTG1 contains a 525 bp open reading frame (ORF) encoding a 174 amino-acid polypeptide, a 306 bp 5' untranslated region (5' UTR), and a 571 bp 3' UTR with a Poly(A) tail as well as a transcription termination signal (AATAAA). Homologne searching against GenBank revealed that Hs-BTG1 was closest to Crassostrea gigas BTG1, sharing 50.57% of protein identities. Hs-BTG1 also shares some typical features of the BTG/TOB family, possessing two well-conserved A and B boxes. Clustering analysis of Hs-BTG1 and other known BTGs showed that Hs-BTG1 was also closely related to BTG1 of C. gigas from the invertebrate BTG1 clade. Function prediction via homology modeling showed that both Hs-BTG1 and C. gigas BTG1 share a similar three-dimensional structure with Homo sapiens BTG1. Tissue-specific expression analysis of the Hs-BTG1 via real-time PCR showed that the transcripts were constitutively expressed, with the highest levels in the hepatopancreas and gills, and the lowest in both haemocyte and muscle tissue. Expression levels of Hs-BTG1 in hepatopancreas (2.03-fold), mantle (2.07-fold), kidney (2.2-fold) and haemocyte (2.5-fold) were enhanced by cadmium (Cd2+) stress, suggesting that Hs-BTG 1 may have played a significant role in H, schlegelii adaptation to adverse environmental conditions.展开更多
BTG1 (B-cell Translocation Gene 1) , a member of the BTG / TOB (Transducer of ErbB-2) family of anti-proliferation factors,has been proven to have an unfavorable effect on muscle fiber growth in several species. T...BTG1 (B-cell Translocation Gene 1) , a member of the BTG / TOB (Transducer of ErbB-2) family of anti-proliferation factors,has been proven to have an unfavorable effect on muscle fiber growth in several species. The porcine BTG1 gene was cloned and its 5' flanking promoter region sequence, and characterized the expression patterns in different tissues of adult pigs and in fetal skeletal muscle at different developmental stages in two breeds. The tissue distribution pattern analyses revealed that the mRNA of porcine BTG1 was ubiquitously expressed in the six tissues of both Landrace and Tongcheng pigs. Real-time quantitative reverse transcriptase-PCR results showed that BTG1 mRNA expression levels were significantly different among the three fetal ages in Tongcheng pigs,while no significant differences were found among the three ages in Landrace pigs. Furthermore,the expression of BTG1 in Landrace pigs was significantly lower than in Tongcheng pigs at all three ages. The temporal expression profiles of the BTG1 gene in mouse myoblast C 2 C 12 cells were shown to be consistent with those of the myogenin gene. A single nucleotide polymorphism (SNP) ,g. 281C 〉 T,was identified in the 3'UTR and allele frequencies were detected in seven pig breed populations. Significant associations were found between the g. 281C 〉 T polymorphism and growth and meat quality traits. Our results indicate that the porcine BTG1 gene could play a potential role in markerassisted selection and as such may be a gene of economic importance.展开更多
基金This project was granted by the National Nature Science Foundation of China(No.30100185).
文摘Aim: To explore the effect of androgen receptor (AR) on the expression of the cell cycle-related genes, such as CDKNIA and BTG1, in prostate cancer cell line LNCaP. Methods: After AR antagonist flutamide treatment and confirmation of its effect by phase contrast microscope and flow cytometry, the differential expression of the cell cycle-related genes was analyzed by a cDNA microarray. The flutamide treated cells were set as the experimental group and the LNCaP cells as the control. We labeled cDNA probes of the experimental group and control group with Cy5 and Cy3 dyes, respectively, through reverse transcription. Then we hybridized the cDNA probes with cDNA microarrays, which contained 8 126 unique human cDNA sequences and the chip was scanned to get the fluorescent values of Cy5 and Cy3 on each spot. After primary analysis, reverse transcription polymerase chain reaction (RT- PCR) tests were carried out to confirm the results of the chips. Results:After AR antagonist flutamide treatment, three hundred and twenty-six genes (3.93 %) expressed differentially, 97 down-regulated and 219 up-regulated. Among them, eight up-regulated genes might be cell cycle-related, namely CDCIO, NRAS, BTG1, Wee1, CLK3, DKFZP564A122, CDKNIA and BTG2. The CDKNIA and BTG1 gene mRNA expression was confirmed to be higher in the experimental group by RT-PCR, while p53 mRNA expression had no significant changes. Conclusion: Flutamide treatment might up-regulate CDKN1A and BTG1 expression in prostate cancer cells. The protein expressions of CDKN1A and BTG1 play an important role in inhibiting the proliferation of cancer cells. CDKN1A has a great impact on the cell cycle of prostate cancer cells and may play a role in the cancer cells in a p53-independent pathway. The prostate cancer cells might affect the cell cycle-related genes by activating AR and thus break the cell cycle control.
基金supported by the Key Scientific and Technological Programme of Jiangxi Province,China(20121BBF60036)the Special Fund for Agro-scientific Research in the Public Interest,State Agriculture Ministry of China(200903028)+2 种基金the Science and Technology Landing Project of Jiangxi Province,China(KJLD12001)the Youth Fund of the Education Department of Jiangxi Province,China(GJJ14219)the National Natural Science Foundation of China(31160534)
文摘The B cells translocation gene 1 (BTG1) is a member of the BTG/TOB family of anti-proliferative genes, which have recently emerged as important regulators of cell growth and differentiation among vertebrates. Here, for the first time we cloned the full-length eDNA sequence of Hyriopsis schlegelii (Hs-BTG1), an economically important freshwater shellfish and potential indicator of environmental heavy metal pollution, for the first time. Using rapid amplification of eDNA ends (RACE) together with splicing the EST sequence from a haemocyte eDNA library, we found that Hs-BTG1 contains a 525 bp open reading frame (ORF) encoding a 174 amino-acid polypeptide, a 306 bp 5' untranslated region (5' UTR), and a 571 bp 3' UTR with a Poly(A) tail as well as a transcription termination signal (AATAAA). Homologne searching against GenBank revealed that Hs-BTG1 was closest to Crassostrea gigas BTG1, sharing 50.57% of protein identities. Hs-BTG1 also shares some typical features of the BTG/TOB family, possessing two well-conserved A and B boxes. Clustering analysis of Hs-BTG1 and other known BTGs showed that Hs-BTG1 was also closely related to BTG1 of C. gigas from the invertebrate BTG1 clade. Function prediction via homology modeling showed that both Hs-BTG1 and C. gigas BTG1 share a similar three-dimensional structure with Homo sapiens BTG1. Tissue-specific expression analysis of the Hs-BTG1 via real-time PCR showed that the transcripts were constitutively expressed, with the highest levels in the hepatopancreas and gills, and the lowest in both haemocyte and muscle tissue. Expression levels of Hs-BTG1 in hepatopancreas (2.03-fold), mantle (2.07-fold), kidney (2.2-fold) and haemocyte (2.5-fold) were enhanced by cadmium (Cd2+) stress, suggesting that Hs-BTG 1 may have played a significant role in H, schlegelii adaptation to adverse environmental conditions.
基金supported by the Outstanding Youth Foundation of NSFC (31025026)the Creative Team Project of Chinese Ministry of Education (IRT-0831)+1 种基金the National Natural Science Foundation of China (30800606 and 31072010)the Natural Science Foundation of Hubei Province (2010CDB10106)
文摘BTG1 (B-cell Translocation Gene 1) , a member of the BTG / TOB (Transducer of ErbB-2) family of anti-proliferation factors,has been proven to have an unfavorable effect on muscle fiber growth in several species. The porcine BTG1 gene was cloned and its 5' flanking promoter region sequence, and characterized the expression patterns in different tissues of adult pigs and in fetal skeletal muscle at different developmental stages in two breeds. The tissue distribution pattern analyses revealed that the mRNA of porcine BTG1 was ubiquitously expressed in the six tissues of both Landrace and Tongcheng pigs. Real-time quantitative reverse transcriptase-PCR results showed that BTG1 mRNA expression levels were significantly different among the three fetal ages in Tongcheng pigs,while no significant differences were found among the three ages in Landrace pigs. Furthermore,the expression of BTG1 in Landrace pigs was significantly lower than in Tongcheng pigs at all three ages. The temporal expression profiles of the BTG1 gene in mouse myoblast C 2 C 12 cells were shown to be consistent with those of the myogenin gene. A single nucleotide polymorphism (SNP) ,g. 281C 〉 T,was identified in the 3'UTR and allele frequencies were detected in seven pig breed populations. Significant associations were found between the g. 281C 〉 T polymorphism and growth and meat quality traits. Our results indicate that the porcine BTG1 gene could play a potential role in markerassisted selection and as such may be a gene of economic importance.