The effects of ground subsidence and piled spacing on axial force of piles in squared piled rafts were investigated using numerical analysis. Two cases of piled rafts in soft clay including case 1 (s = 2d) and case 2 ...The effects of ground subsidence and piled spacing on axial force of piles in squared piled rafts were investigated using numerical analysis. Two cases of piled rafts in soft clay including case 1 (s = 2d) and case 2 (s = 4d) with s and d were piled spacing and piled diameter respectively were considered in this study. Undrained (without ground water pumping) and drained (with ground water pumping) conditions were applied in each case in order to evaluate variations of ultimate bearing capacity of piled raft and axial force of the piles in piled raft. The results showed that ultimate bearing capacity increased about 25% for undrained condition and about 32% for drained condition when piled spacing increased from 2d to 4d. In the same piled spacing, axial force of the piles increased about 9% for piled spacing of 2d and 7% for piled spacing of 4d when drained condition was applied. When piled spacing increased 2 times (2d to 4d), the axial force of piles increased about 7% for undrained condition and about 5% for drained condition.展开更多
During cold ring rolling process, changing the sizes of forming rolls including driver roll and idle roll will lead to a change of amount of feed Ah and contact areas between ring blank and forming rolls, thus a chang...During cold ring rolling process, changing the sizes of forming rolls including driver roll and idle roll will lead to a change of amount of feed Ah and contact areas between ring blank and forming rolls, thus a change of the shape and dimension of deformation zone located in the gap of forming rolls is found. It has a significant effect on metal flow and the forming quality of deformed ring. So the size effect of forming rolls on cold ring rolling was investigated by three-dimensional dynamic explicit FEM under ABAQUS environment. The obtained results thoroughly reveal the influence laws of the sizes of forming rolls on the average spread, fishtail coefficient, degree of inhomogeneous deformation and force and power parameters etc not only provide an important basis for design of the forming rolls and optimization of cold ring rolling process, but also reveal the plastic deformation mechanism of cold ring rolling.展开更多
文摘The effects of ground subsidence and piled spacing on axial force of piles in squared piled rafts were investigated using numerical analysis. Two cases of piled rafts in soft clay including case 1 (s = 2d) and case 2 (s = 4d) with s and d were piled spacing and piled diameter respectively were considered in this study. Undrained (without ground water pumping) and drained (with ground water pumping) conditions were applied in each case in order to evaluate variations of ultimate bearing capacity of piled raft and axial force of the piles in piled raft. The results showed that ultimate bearing capacity increased about 25% for undrained condition and about 32% for drained condition when piled spacing increased from 2d to 4d. In the same piled spacing, axial force of the piles increased about 9% for piled spacing of 2d and 7% for piled spacing of 4d when drained condition was applied. When piled spacing increased 2 times (2d to 4d), the axial force of piles increased about 7% for undrained condition and about 5% for drained condition.
基金Prqject(50335060) supported by the National Natural Science Foundation for Key Program of China Project (50225518) supported by the National Science Found of China for Distinguished Young Scholars
文摘During cold ring rolling process, changing the sizes of forming rolls including driver roll and idle roll will lead to a change of amount of feed Ah and contact areas between ring blank and forming rolls, thus a change of the shape and dimension of deformation zone located in the gap of forming rolls is found. It has a significant effect on metal flow and the forming quality of deformed ring. So the size effect of forming rolls on cold ring rolling was investigated by three-dimensional dynamic explicit FEM under ABAQUS environment. The obtained results thoroughly reveal the influence laws of the sizes of forming rolls on the average spread, fishtail coefficient, degree of inhomogeneous deformation and force and power parameters etc not only provide an important basis for design of the forming rolls and optimization of cold ring rolling process, but also reveal the plastic deformation mechanism of cold ring rolling.