We investigate magnetization reversal of two-body uniaxial Stoner particles, by injecting spin-polarized current through a spin-valve structure. The two-body Stoner particles perform synchronized dynamics and can act ...We investigate magnetization reversal of two-body uniaxial Stoner particles, by injecting spin-polarized current through a spin-valve structure. The two-body Stoner particles perform synchronized dynamics and can act as an information bit in computer technology. In the presence of magnetic dipole–dipole interaction(DDI) between the two particles,the critical switching current Ic for reversing the two dipoles is analytically obtained and numerically verified in two typical geometric configurations. The Ic bifurcates at a critical DDI strength, where Ic can decrease to about 70% of the usual value without DDI. Moreover, we also numerically investigate the magnetic hysteresis loop, magnetization self-precession,reversal time and synchronization stability phase diagram for the two-body system in the synchronized dynamics regime.展开更多
We study the ferromagnetic transition of a two-component homogeneous dipolar Fermi gas with 1D spin-orbit coupling(SOC) at finite temperature.The ferromagnetic transition temperature is obtained as functions of dipola...We study the ferromagnetic transition of a two-component homogeneous dipolar Fermi gas with 1D spin-orbit coupling(SOC) at finite temperature.The ferromagnetic transition temperature is obtained as functions of dipolar constantλd,spin-orbit coupling constant λSOC and contact interaction constant λS.It increases monotonically with these three parameters.In the ferromagnetic phase,the Fermi surfaces of different components can be deformed differently.The phase diagrams at finite temperature are obtained.展开更多
In order to expand the applications of giant magnetostrictive materials in the field of precision positioning, an extreme value model of free energy was established with deflection angle of magnetic domain as the inde...In order to expand the applications of giant magnetostrictive materials in the field of precision positioning, an extreme value model of free energy was established with deflection angle of magnetic domain as the independent variable from the micro-scopic aspect. The model was based on Stoner-Wohlfarth (S-W) model wherein Tb0.3Dy0.7Fe2 alloy was taken as a research object, and the deflection law of magnetization angle of single magnetic domain was studied through drawing the equipotential curves and changing curves of free energy function under different applied stresses and in different magnetic fields. Research results showed that there were three kinds of magnetization angles of single magnetic domain as for Tb0.3Dy0.7Fe2 alloy, namely 35.26o , 90o and 144.74o ; under the action of applied stresses, the magnetization anglesθwere deflected to the direction of 90o for the magnetic domains of 35.26o and 144.74o and the magnetization anglesψ were changed and transited to the direction ofψ=135o for the magnetic domain of 90o ; the magnetic domain was deflected under the action of small magnetic field for magnetic domain of 35.26o ; with the increase of magnetic field intensity, the magnetic domain of 90o had a transition trend to a stationary planar ofψ=ψ0; the magnetic domain of 144.74o had a transition trend to the direction of magnetic domain of 35.26o. These results laid a foundation for the magnetostrictive mechanism and establishment of precision positioning theories of the giant magnetostrictive materials.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.11274236)the Deutsche Forschungsgemeinschaft via SFB 689
文摘We investigate magnetization reversal of two-body uniaxial Stoner particles, by injecting spin-polarized current through a spin-valve structure. The two-body Stoner particles perform synchronized dynamics and can act as an information bit in computer technology. In the presence of magnetic dipole–dipole interaction(DDI) between the two particles,the critical switching current Ic for reversing the two dipoles is analytically obtained and numerically verified in two typical geometric configurations. The Ic bifurcates at a critical DDI strength, where Ic can decrease to about 70% of the usual value without DDI. Moreover, we also numerically investigate the magnetic hysteresis loop, magnetization self-precession,reversal time and synchronization stability phase diagram for the two-body system in the synchronized dynamics regime.
基金Project supported by the National Key Research and Development Project of China(Grant No.2016YFA0301501).
文摘We study the ferromagnetic transition of a two-component homogeneous dipolar Fermi gas with 1D spin-orbit coupling(SOC) at finite temperature.The ferromagnetic transition temperature is obtained as functions of dipolar constantλd,spin-orbit coupling constant λSOC and contact interaction constant λS.It increases monotonically with these three parameters.In the ferromagnetic phase,the Fermi surfaces of different components can be deformed differently.The phase diagrams at finite temperature are obtained.
基金Project supported by the National Natural Science Foundation of China(51075001,51575002)Chinese Key Technologies Program of Anhui Province(1301022074)
文摘In order to expand the applications of giant magnetostrictive materials in the field of precision positioning, an extreme value model of free energy was established with deflection angle of magnetic domain as the independent variable from the micro-scopic aspect. The model was based on Stoner-Wohlfarth (S-W) model wherein Tb0.3Dy0.7Fe2 alloy was taken as a research object, and the deflection law of magnetization angle of single magnetic domain was studied through drawing the equipotential curves and changing curves of free energy function under different applied stresses and in different magnetic fields. Research results showed that there were three kinds of magnetization angles of single magnetic domain as for Tb0.3Dy0.7Fe2 alloy, namely 35.26o , 90o and 144.74o ; under the action of applied stresses, the magnetization anglesθwere deflected to the direction of 90o for the magnetic domains of 35.26o and 144.74o and the magnetization anglesψ were changed and transited to the direction ofψ=135o for the magnetic domain of 90o ; the magnetic domain was deflected under the action of small magnetic field for magnetic domain of 35.26o ; with the increase of magnetic field intensity, the magnetic domain of 90o had a transition trend to a stationary planar ofψ=ψ0; the magnetic domain of 144.74o had a transition trend to the direction of magnetic domain of 35.26o. These results laid a foundation for the magnetostrictive mechanism and establishment of precision positioning theories of the giant magnetostrictive materials.