针对传统的多向主元分析(Multiway Principal component Analysis,MPCA)常会导致误诊断,且对批生产过程难以保证在线状态监测和故障诊断的实时性,提出了一种改进的MPCA与动态时间错位(Dynamic Time Warping,DTW)方法,该方法采用多模型...针对传统的多向主元分析(Multiway Principal component Analysis,MPCA)常会导致误诊断,且对批生产过程难以保证在线状态监测和故障诊断的实时性,提出了一种改进的MPCA与动态时间错位(Dynamic Time Warping,DTW)方法,该方法采用多模型非线性结构代替传统的MPCA单模型线性化结构,并利用对称式DTW算法解决了多元轨迹同步化的问题。将该方法应用到青霉素发酵批过程的在线故障监测中,结果表明它克服了MPCA不能处理非线性过程和实时性问题,并避免了MPCA 在线应用时预报未来测量值带来的误差,提高了批过程性能监测和故障诊断的准确性。展开更多
在研究多向主元分析(MPCA——Multi-way Principal Component Analysis)理论的基础上,通过对间歇过程数据的分析研究移动窗口多向主元分析(MWMPCA——Moving Window Multi-way Principal Component Analysis)理论,并将该方法应用于TE过...在研究多向主元分析(MPCA——Multi-way Principal Component Analysis)理论的基础上,通过对间歇过程数据的分析研究移动窗口多向主元分析(MWMPCA——Moving Window Multi-way Principal Component Analysis)理论,并将该方法应用于TE过程进行故障检测与诊断.与MPCA方法比较,MWMPCA方法随采样的增加窗口长度不断改变,使窗口内有用的信息不断增加,所建模型更加准确,能提高监控系统的稳定性.通过对Q统计量、HotellingT2统计量的检测结果进行分析比较,证明MWMPCA理论在检测系统异常事件中能提高系统的准确性,使系统故障检测与诊断的性能得到改进.展开更多
文摘针对传统的多向主元分析(Multiway Principal component Analysis,MPCA)常会导致误诊断,且对批生产过程难以保证在线状态监测和故障诊断的实时性,提出了一种改进的MPCA与动态时间错位(Dynamic Time Warping,DTW)方法,该方法采用多模型非线性结构代替传统的MPCA单模型线性化结构,并利用对称式DTW算法解决了多元轨迹同步化的问题。将该方法应用到青霉素发酵批过程的在线故障监测中,结果表明它克服了MPCA不能处理非线性过程和实时性问题,并避免了MPCA 在线应用时预报未来测量值带来的误差,提高了批过程性能监测和故障诊断的准确性。
文摘在研究多向主元分析(MPCA——Multi-way Principal Component Analysis)理论的基础上,通过对间歇过程数据的分析研究移动窗口多向主元分析(MWMPCA——Moving Window Multi-way Principal Component Analysis)理论,并将该方法应用于TE过程进行故障检测与诊断.与MPCA方法比较,MWMPCA方法随采样的增加窗口长度不断改变,使窗口内有用的信息不断增加,所建模型更加准确,能提高监控系统的稳定性.通过对Q统计量、HotellingT2统计量的检测结果进行分析比较,证明MWMPCA理论在检测系统异常事件中能提高系统的准确性,使系统故障检测与诊断的性能得到改进.