期刊文献+

基于二维主元分析的间歇过程故障诊断 被引量:2

Fault diagnosis for batch processes based on two-dimensional principal component analysis
下载PDF
导出
摘要 传统的多向主元分析(MPCA)已广泛应用于监视多变量间歇过程。在MPCA算法中,三维的间歇过程数据需要转换为高维的二维向量,导致计算量和存储空间大,同时不可避免地丢失一些重要信息。因此,提出一种新的基于二维主元分析(2DPCA)的故障诊断方法。由于每个批次的间歇过程数据是一个二维向量(矩阵),应用以各个批次矩阵为分析对象的2DPCA算法,避免矢量化,存储空间和存储需求小;另外,2DPCA采用各个批次的协方差的平均值来进行建模,能够更加准确地反映出不同类型的故障,在一定程度上增强了故障诊断的准确性。半导体工业实例的监视结果说明,2DPCA方法优于MPCA。 Multiway Principal Component Analysis (MPCA) has been widely used to monitor multivariate batch process. In MPCA method, the batch data are transformed as a vector in high-dimensional space, resulting in large computation, storage space and loss of important information inevitably. A new batch process fault diagnosis method based on the two-Dimensional Principal Component Analysis (2DPCA) was presented. Essentially, every batch data was presented as a second order vector, or a matrix. In this case, 2DPCA could be used to deal with the two-dimensional batch data matrix directly instead of performing vectorizing procedure with low memory and storage requirements. In addition, 2DPCA was used to model with the covariance average of all the batches, which accurately reflected the different faults and enhanced the accuracy of fault diagnosis to a certain extent. The monitoring results of an industrial example show that the 2DPCA method outperforms the conventional MPCA.
出处 《计算机应用》 CSCD 北大核心 2013年第2期350-352,共3页 journal of Computer Applications
基金 国家自然科学基金资助项目(61174119)
关键词 间歇过程 故障诊断 主元分析 多向主元分析 二维主元分析 batch process fault diagnosis Principal Component Analysis (PCA) Multiway Principal Component Analysis (MPCA) two-Dimensional Principal Component Analysis (2DPCA)
  • 相关文献

参考文献1

二级参考文献2

共引文献22

同被引文献17

  • 1陆宁云,王福利,高福荣,王姝.间歇过程的统计建模与在线监测[J].自动化学报,2006,32(3):400-410. 被引量:61
  • 2MUKHOPADHYAY A, MAULIK U, BANDYOPADHYAY S, et al. Survey of multi-objective evolutionary algorithms for data mining: part II [J]. IEEE transactions on evolutionary computation, 2014, 18(1): 20-35. 被引量:1
  • 3MUTEKI K, MACGREGOR J, UEDA T. Estimation of missing data using latent variable methods with auxiliary information [J]. Chemometrics and intelligent laboratory systems, 2005, 78(1): 41-50. 被引量:1
  • 4FAN J, GIJBELS I. Variable bandwidth and local linear regression smoothers [J]. The annals of statistics, 1992, 20(4): 2008-2036. 被引量:1
  • 5COVER T, HART P. Nearest neighbor pattern classification [J]. IEEE transactions on information theory, 1967, 13(1): 21-27. 被引量:1
  • 6XIANG S, NIE F, PAN C, et al. Regression reformulations of LLE and LTSA with locally linear transformation [J]. IEEE transactions on systems, man, and cybernetics, part B: cybernetics, 2011, 41(5): 1250-1262. 被引量:1
  • 7YIN S, DING S, HAGHANI A, et al. A comparison study of basic data-driven fault diagnosis and process monitoring methods on the benchmark Tennessee Eastman process [J]. Journal of process control, 2012, 22(9): 1567-1581. 被引量:1
  • 8RICKER N. Decentralized control of the Tennessee Eastman challenge process [J]. Journal of process control, 1996, 6(4): 205-221. 被引量:1
  • 9STTUBBS S, ZHANG J, MORRIS J. Multiway interval partial least squares for batch process performance monitoring [J]. Industrial & engineering chemistry research, 2013, 52(35): 12399-12407. 被引量:1
  • 10WANG X, HU Z, FENG J, et al. Mean-shift tracking algorithm based on Kalman filter using adaptive window and sub-blocking [C]// WCICA 2014: Proceedings of the 2014 11th World Congress on Intelligent Control and Automation. Piscataway, NJ: IEEE, 2014: 5438-5443. 被引量:1

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部