A parameterized internal tide dissipation term and self-attraction and loading(SAL) tide term are introduced in a barotropic numerical model to investigate the dynamics of semidiurnal tidal constituents M_2 and S_2 in...A parameterized internal tide dissipation term and self-attraction and loading(SAL) tide term are introduced in a barotropic numerical model to investigate the dynamics of semidiurnal tidal constituents M_2 and S_2 in the Bohai Sea, Yellow Sea and East China Sea(BYECS). The optimal parameters for bottom friction and internal dissipation are obtained through a series of numerical computations. Numerical simulation shows that the tide-generating force contributes 1.2% of M_2 power for the entire BYECS and up to 2.8% for the East China Sea deep basin. SAL tide contributes 4.4% of M_2 power for the BYECS and up to 9.3% for the East China Sea deep basin. Bottom friction plays a major role in dissipating tidal energy in the shelf regions, and the internal tide eff ect is important in the deep water regions. Numerical experiments show that artifi cial removal of tide-generating force in the BYECS can cause a signifi cant dif ference(as much as 30 cm) in model output. Artifi cial removal of SAL tide in the BYECS can cause even greater diff erence, up to 40 cm. This indicates that SAL tide should be taken into account in numerical simulations, especially if the tide-generating force is considered.展开更多
采用第三代海浪模型WAVEWATCHIII,模拟了中国沿海的台风浪过程,以实测浮标数据作为验证,比较了不同的风能输入项和能量耗散方案对台风浪模拟精度影响,结果表明风能输入项与耗散源项选用Tolman and Chalikov方案计算得到的结果与实测值...采用第三代海浪模型WAVEWATCHIII,模拟了中国沿海的台风浪过程,以实测浮标数据作为验证,比较了不同的风能输入项和能量耗散方案对台风浪模拟精度影响,结果表明风能输入项与耗散源项选用Tolman and Chalikov方案计算得到的结果与实测值更加吻合,3种方案中该方案更适合中国沿海台风浪的计算。展开更多
基金Supported by the National Natural Science Foundation of China(Nos.40676009,40606006)the Qingdao Science and Technology Basic Research Program(No.11-1-4-98-jch)
文摘A parameterized internal tide dissipation term and self-attraction and loading(SAL) tide term are introduced in a barotropic numerical model to investigate the dynamics of semidiurnal tidal constituents M_2 and S_2 in the Bohai Sea, Yellow Sea and East China Sea(BYECS). The optimal parameters for bottom friction and internal dissipation are obtained through a series of numerical computations. Numerical simulation shows that the tide-generating force contributes 1.2% of M_2 power for the entire BYECS and up to 2.8% for the East China Sea deep basin. SAL tide contributes 4.4% of M_2 power for the BYECS and up to 9.3% for the East China Sea deep basin. Bottom friction plays a major role in dissipating tidal energy in the shelf regions, and the internal tide eff ect is important in the deep water regions. Numerical experiments show that artifi cial removal of tide-generating force in the BYECS can cause a signifi cant dif ference(as much as 30 cm) in model output. Artifi cial removal of SAL tide in the BYECS can cause even greater diff erence, up to 40 cm. This indicates that SAL tide should be taken into account in numerical simulations, especially if the tide-generating force is considered.
文摘采用第三代海浪模型WAVEWATCHIII,模拟了中国沿海的台风浪过程,以实测浮标数据作为验证,比较了不同的风能输入项和能量耗散方案对台风浪模拟精度影响,结果表明风能输入项与耗散源项选用Tolman and Chalikov方案计算得到的结果与实测值更加吻合,3种方案中该方案更适合中国沿海台风浪的计算。