摘要
解对流方程的大多数常见的显式差分格式 ,其稳定性条件是苛刻的 .这一困难可由在常规的显式差分格式中引入耗散项而得到克服 .基于此 ,我们导出一类新的无条件稳定的两层的半显式差分格式及若干具有高稳定性的显式格式 .它们包含了若干已知的具有高稳定性的显式格式 .
The stability condition of most conventional explicit schemes, for solving the convective equation u t+au x=0 is harsh. This is a difficulty which can be overcome by introducing a dissipative term into conventional explicit schemes. On this basis, the author derives a class of two-level new semi-explicit schemes with unconditional stability and also a number of explicit schemes with higher stability of which some are adready known.
出处
《应用数学》
CSCD
北大核心
2001年第S1期154-158,共5页
Mathematica Applicata
关键词
耗散项
显式与半显式差分格式
对流方程
Dissipative term
Explicit and semi-explicit schemes
Convective equation