为了满足电力电子系统高频、高效和高功率密度的需求,碳化硅金属氧化物半导体场效应管(silicon carbide metal oxide semiconductor field effect transistor,SiC MOSFET)越来越广泛地应用于各类电力电子变换器。其开关过程中存在瞬态...为了满足电力电子系统高频、高效和高功率密度的需求,碳化硅金属氧化物半导体场效应管(silicon carbide metal oxide semiconductor field effect transistor,SiC MOSFET)越来越广泛地应用于各类电力电子变换器。其开关过程中存在瞬态电压电流尖峰和高频振荡,不仅对半导体器件的安全运行构成威胁,而且会恶化电力电子变换器的电磁兼容性。该文针对SiCMOSFET开关过程中存在的瞬态电压电流尖峰和振荡的问题,分析SiCMOSFET开关过程及瞬态电压电流尖峰和振荡产生机理,并在此基础上提出一种电流注入型有源驱动电路。该有源驱动电路通过在SiCMOSFET开通过程的电流上升阶段向栅极注入反向电流,在关断过程的电流下降阶段向栅极注入正向电流,以达到抑制开关过程瞬态电压电流尖峰和振荡的目的。实验结果表明,提出的有源驱动电路能够有效抑制SiCMOSFET开关过程瞬态电压电流的尖峰和高频振荡,从而从源头上改善了电力电子变换器的电磁兼容。展开更多
与硅金属氧化物半导体场效应管(silicon metal oxide semiconductor field effect transistor,SiMOSFET)相比,碳化硅(silicon carbide,SiC) MOSFET具有更高的击穿电压,更低的导通电阻,更快的开关速度和更高的工作温度,正被广泛应用于光...与硅金属氧化物半导体场效应管(silicon metal oxide semiconductor field effect transistor,SiMOSFET)相比,碳化硅(silicon carbide,SiC) MOSFET具有更高的击穿电压,更低的导通电阻,更快的开关速度和更高的工作温度,正被广泛应用于光伏逆变器、电动汽车和风力发电等领域,但是SiC MOSFET的高开关速度会导致器件开关过程中发生电流、电压过冲和振荡,不仅会增加器件的开关损耗,甚至会导致器件损坏。文中首先对SiC MOSFET的开关过程进行详细分析,得出器件开关过程中电流、电压过冲和振荡的产生机理,然后根据影响电流、电压过冲和振荡的关键因数,设计一款有源驱动电路。该电路能够在器件开关的特定阶段内同时增加驱动电阻阻值和减小栅极电流,从而抑制器件开关过程中的电流、电压过冲和振荡。实验结果表明,与传统驱动电路相比,所设计的有源驱动电路能够在不同驱动电阻、负载电流和SiC MOSFET条件下,均有效抑制器件的电流、电压过冲和振荡。展开更多
文摘为了满足电力电子系统高频、高效和高功率密度的需求,碳化硅金属氧化物半导体场效应管(silicon carbide metal oxide semiconductor field effect transistor,SiC MOSFET)越来越广泛地应用于各类电力电子变换器。其开关过程中存在瞬态电压电流尖峰和高频振荡,不仅对半导体器件的安全运行构成威胁,而且会恶化电力电子变换器的电磁兼容性。该文针对SiCMOSFET开关过程中存在的瞬态电压电流尖峰和振荡的问题,分析SiCMOSFET开关过程及瞬态电压电流尖峰和振荡产生机理,并在此基础上提出一种电流注入型有源驱动电路。该有源驱动电路通过在SiCMOSFET开通过程的电流上升阶段向栅极注入反向电流,在关断过程的电流下降阶段向栅极注入正向电流,以达到抑制开关过程瞬态电压电流尖峰和振荡的目的。实验结果表明,提出的有源驱动电路能够有效抑制SiCMOSFET开关过程瞬态电压电流的尖峰和高频振荡,从而从源头上改善了电力电子变换器的电磁兼容。