The external stability of fractional-order continuous linear control systems described by both fractional-order state space representation and fractional-order transfer function is mainly investigated in this paper. I...The external stability of fractional-order continuous linear control systems described by both fractional-order state space representation and fractional-order transfer function is mainly investigated in this paper. In terms of Lyapunov’s stability theory and the stability analysis of the integer-order linear control systems, the definitions of external stability for fractional-order control systems are presented. By using the theorems of the Mittag-Leffler function in two parameters, the necessary and sufficient conditions of external stability are directly derived. The illustrative examples and simulation results are also given.展开更多
通过Mittag-Leffler矩阵函数构造的能观性Gram矩阵和Cayley-Hamilton定理获得了一类带Caputo导数、具有分布型时滞的分数阶控制系统cDαx(t)=Ax(t)+integral from n=-h to 0(dxB(t,x)u(t+x)),t∈J:=J/{t1,t2,…tk},J:=[0,T],y(t)=Cx(t)+...通过Mittag-Leffler矩阵函数构造的能观性Gram矩阵和Cayley-Hamilton定理获得了一类带Caputo导数、具有分布型时滞的分数阶控制系统cDαx(t)=Ax(t)+integral from n=-h to 0(dxB(t,x)u(t+x)),t∈J:=J/{t1,t2,…tk},J:=[0,T],y(t)=Cx(t)+Du(t),x(0)=x0, 具有能观性的2个充要条件:1)系统在[0,t f]上,存在时刻tf>0,使Gram矩阵W0[0,tf]=integral from n=0 to tf(Eα(AT tα)CTCEα(A tα)dt)非奇异;2)若系统的能观性判别矩阵为Q0{C CA … CA(n-1)},则rankQ0=rank{C CA … CA(n-1)}=n时,系统是能观的.展开更多
文摘The external stability of fractional-order continuous linear control systems described by both fractional-order state space representation and fractional-order transfer function is mainly investigated in this paper. In terms of Lyapunov’s stability theory and the stability analysis of the integer-order linear control systems, the definitions of external stability for fractional-order control systems are presented. By using the theorems of the Mittag-Leffler function in two parameters, the necessary and sufficient conditions of external stability are directly derived. The illustrative examples and simulation results are also given.
文摘通过Mittag-Leffler矩阵函数构造的能观性Gram矩阵和Cayley-Hamilton定理获得了一类带Caputo导数、具有分布型时滞的分数阶控制系统cDαx(t)=Ax(t)+integral from n=-h to 0(dxB(t,x)u(t+x)),t∈J:=J/{t1,t2,…tk},J:=[0,T],y(t)=Cx(t)+Du(t),x(0)=x0, 具有能观性的2个充要条件:1)系统在[0,t f]上,存在时刻tf>0,使Gram矩阵W0[0,tf]=integral from n=0 to tf(Eα(AT tα)CTCEα(A tα)dt)非奇异;2)若系统的能观性判别矩阵为Q0{C CA … CA(n-1)},则rankQ0=rank{C CA … CA(n-1)}=n时,系统是能观的.