期刊文献+

带分布型时滞的分数阶控制系统能观性的条件 被引量:1

Observability of Fractional Dynamical Systems with Distributed Delays
下载PDF
导出
摘要 通过Mittag-Leffler矩阵函数构造的能观性Gram矩阵和Cayley-Hamilton定理获得了一类带Caputo导数、具有分布型时滞的分数阶控制系统cDαx(t)=Ax(t)+integral from n=-h to 0(dxB(t,x)u(t+x)),t∈J:=J/{t1,t2,…tk},J:=[0,T],y(t)=Cx(t)+Du(t),x(0)=x0, 具有能观性的2个充要条件:1)系统在[0,t f]上,存在时刻tf>0,使Gram矩阵W0[0,tf]=integral from n=0 to tf(Eα(AT tα)CTCEα(A tα)dt)非奇异;2)若系统的能观性判别矩阵为Q0{C CA … CA(n-1)},则rankQ0=rank{C CA … CA(n-1)}=n时,系统是能观的. The paper studies on the observability of fractional dynamical systems with distributed delays cDαx(t)=Ax(t)+integral from n=-h to 0(dxB(t,x)u(t+x)),t∈J:=J/{t1,t2,…tk},J:=[0,T],y(t)=Cx(t)+Du(t),x(0)=x0 where cDα is the Caputo fractional derivative.By using the observability Gram matrix which is defined by Mittag Leffler matrix function and Cayley-Hamilton theorem,some sufficient conditions of observability are obtained:1) The system is observable on [0,tf]if and only if the observability Gammian matrix W0[0,tf]=integral from n=0 to tf(Eα(AT tα)CTCEα(A tα)dt) is non-singular,for some tf〉0;2) The system is observable on [0,tf] if and only if rankQ0=rank{C CA … CA(n-1)}=n.
作者 朱彦
出处 《五邑大学学报(自然科学版)》 CAS 2012年第3期23-27,共5页 Journal of Wuyi University(Natural Science Edition)
基金 教育部博士点基金资助项目(20113401110001)
关键词 分数阶控制系统 CAPUTO导数 分布型时滞 能观性 格拉姆矩阵 fractional order control system Caputo derivatives distributed delays observability Gram matrix
  • 相关文献

参考文献8

  • 1PODLUBNY I. Fractional differential equations[M]//Mathematics in Science and Engineering. New York, London, Toronto: Academic Press, 1999. 被引量:1
  • 2LAKSHMIKANTHAM V, BAINOV D D, SIMEONOV P S. Theory of impulsive differential equations[M]. Singapore: World Scientific, 1989. 被引量:1
  • 3KILBAS A A, SRIVASTAVA H M, TRUJILLO J J. Theory and applications of fractional differential equations[M]. Amsterdam: Elsevier Science B V, 2006. 被引量:1
  • 4BALACHANDRAN K, ZHOU Yong, KOKILA J. Relative controllability of fractional dynamical systems with distributed delays in control[J]. Computers and Mathematics with Applications, 2012. doi: 10. 1016/j. camwa. 2011. 11.061. 被引量:1
  • 5BALACHANDRAN K, PARK J Y, TRUJILLO J J. Controllability of nonlinear fractional dynamical systems[J]. Nonlinear Analysis, 2012, 75: 1919-1926. 被引量:1
  • 6GUAN Zhihong, QIAN Tonghui, YU Xinghuo. On controllability and observability for a class of impulsive systems[J]. Systems & Control Letters, 2002, 47: 247-257. 被引量:1
  • 7XIE Guangming, WANG Long. Controllability and observability of a class of linear impulsive systems[J]. Mathematical Analysis and Applications, 2005, 304: 336-355. 被引量:1
  • 8GUO Tianliang. Controllability and observability Computers and Mathematics with Applications, 2012 of impulsive fractional linear time-invariant system[J] doi:lO, lO16/j, eamwa. 2012.02. 020. 被引量:1

同被引文献5

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部