摘要
通过Mittag-Leffler矩阵函数构造的能观性Gram矩阵和Cayley-Hamilton定理获得了一类带Caputo导数、具有分布型时滞的分数阶控制系统cDαx(t)=Ax(t)+integral from n=-h to 0(dxB(t,x)u(t+x)),t∈J:=J/{t1,t2,…tk},J:=[0,T],y(t)=Cx(t)+Du(t),x(0)=x0, 具有能观性的2个充要条件:1)系统在[0,t f]上,存在时刻tf>0,使Gram矩阵W0[0,tf]=integral from n=0 to tf(Eα(AT tα)CTCEα(A tα)dt)非奇异;2)若系统的能观性判别矩阵为Q0{C CA … CA(n-1)},则rankQ0=rank{C CA … CA(n-1)}=n时,系统是能观的.
The paper studies on the observability of fractional dynamical systems with distributed delays cDαx(t)=Ax(t)+integral from n=-h to 0(dxB(t,x)u(t+x)),t∈J:=J/{t1,t2,…tk},J:=[0,T],y(t)=Cx(t)+Du(t),x(0)=x0 where cDα is the Caputo fractional derivative.By using the observability Gram matrix which is defined by Mittag Leffler matrix function and Cayley-Hamilton theorem,some sufficient conditions of observability are obtained:1) The system is observable on [0,tf]if and only if the observability Gammian matrix W0[0,tf]=integral from n=0 to tf(Eα(AT tα)CTCEα(A tα)dt) is non-singular,for some tf〉0;2) The system is observable on [0,tf] if and only if rankQ0=rank{C CA … CA(n-1)}=n.
出处
《五邑大学学报(自然科学版)》
CAS
2012年第3期23-27,共5页
Journal of Wuyi University(Natural Science Edition)
基金
教育部博士点基金资助项目(20113401110001)