期刊文献+

分数阶控制系统稳定性分析 被引量:3

Stability Analysis of Fractional Order Control Systems
下载PDF
导出
摘要 分数阶控制系统的特征根方程多为复变量S的无理多项式,将无理多项式转化为有理多项式非常困难。本文通过考察控制系统的频率特性,提出利用Nyquist判据和对数频率稳定判据来判断分数阶控制系统的稳定性。 Most of the characteristic equations of fractional order control systems are irrational polynomials of complex variable S,and it is very difficult to convert from irrational polynomial to rational polynomial. Through investigating the frequency characteristic of fractional order control systems,Nyquist criterion and logarithmic-frequency criterion are presented to find out the stability of fractional order control systems.
出处 《河南科技大学学报(自然科学版)》 CAS 2007年第2期33-35,共3页 Journal of Henan University of Science And Technology:Natural Science
基金 河南科技大学科研基金项目(2004QN025)
关键词 分数阶控制系统 频率特性 稳定判据 Fractional order control systems Frequency characteristic Stability criterion
  • 相关文献

参考文献8

  • 1Axtell M, Bise E M. Fractional Calculus Applications in Control Systems [C]// Aerospace and Electronics Conf. NewYork, 1990:563 - 566. 被引量:1
  • 2Podlubny Igor. Fractional-Order Systems and Fractiona 1-Order Controllers [CD]. The Academy of Sciences Institute of Experimental Physics, Kosice, Slovak Republic, 1994:32. 被引量:1
  • 3Dorook L'. Numerical Models for Simulation of Fractional-Order Control Systems[ CD]. The Academy of Sciences Instituteof Experimental Physics, Kosice, Slovak Republic, 1994 : 12. 被引量:1
  • 4Petros Ivo, Vinagre Blas M, Dorcok L' , et al. Fractional Digital Control of a Heat Solid: Experiment Results [ C ]//International Carpathian Control Conference ICCC' 2002. Czech Republic ,2002:365 -370. 被引量:1
  • 5Chen Yangquan, Xue Dingyu, Dou Huifang. Fractional Calculus and Biomimetic Control [CD]. Proceedings IEEEInternational Conference on Robotics and Biomimetrics,China,2004:6. 被引量:1
  • 6曾庆山,曹广益,王振滨.分数阶PI^λD^μ控制器的仿真研究[J].系统仿真学报,2004,16(3):465-469. 被引量:36
  • 7薛定宇,陈阳泉.高等应用数学问题的MATLAB求解[M].北京:清华大学出版社,2005. 被引量:9
  • 8张晓华主编..控制系统数字仿真与CAD[M].北京:机械工业出版社,2005:230.

共引文献43

同被引文献25

引证文献3

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部