When using H_∞ techniques to design decentralized controllers for large systems, the whole system is divided into subsystems, which are analysed using H_∞ control theory before being recombined. An analogy was estab...When using H_∞ techniques to design decentralized controllers for large systems, the whole system is divided into subsystems, which are analysed using H_∞ control theory before being recombined. An analogy was established with substructural analysis in structural mechanics, in which H_∞ decentralized control theory corresponds to substructural modal synthesis theory so that the optimal H_∞ norm of the whole system corresponds to the fundamental vibration frequency of the whole structure. Hence, modal synthesis methodology and the extended Wittrick_Williams algorithm were transplanted from structural mechanics to compute the optimal H_∞ norm of the control system. The orthogonality and the expansion theorem of eigenfunctions of the subsystems H_∞ control are presented in part (Ⅰ) of the paper. The modal synthesis method for computation of the optimal H_∞ norm of decentralized control systems and numerical examples are presented in part (Ⅱ).展开更多
Wave propagation in infinitely long hollow sandwich cylinders with prismatic cores is analyzed by the extended Wittriek-Williams (W-W) algorithm and the precise integration method (PIM). The effective elastic cons...Wave propagation in infinitely long hollow sandwich cylinders with prismatic cores is analyzed by the extended Wittriek-Williams (W-W) algorithm and the precise integration method (PIM). The effective elastic constants of prismatic cellular materials are obtained by the homogenization method. By applying the variational principle and introducing the dual variables the canonical equations of Hamiltonian system are constructed. Thereafter, the wave propagation problem is converted to an eigenvalue problem. In numerical examples, the effects of the prismatic cellular topology, the relative density, and the boundary conditions on dispersion relations, respectively, are investigated.展开更多
文摘When using H_∞ techniques to design decentralized controllers for large systems, the whole system is divided into subsystems, which are analysed using H_∞ control theory before being recombined. An analogy was established with substructural analysis in structural mechanics, in which H_∞ decentralized control theory corresponds to substructural modal synthesis theory so that the optimal H_∞ norm of the whole system corresponds to the fundamental vibration frequency of the whole structure. Hence, modal synthesis methodology and the extended Wittrick_Williams algorithm were transplanted from structural mechanics to compute the optimal H_∞ norm of the control system. The orthogonality and the expansion theorem of eigenfunctions of the subsystems H_∞ control are presented in part (Ⅰ) of the paper. The modal synthesis method for computation of the optimal H_∞ norm of decentralized control systems and numerical examples are presented in part (Ⅱ).
基金supported by the National Basic Research Program of China(No.2011CB610300)the 111 project(No.B07050)+4 种基金the National Natural Science Foundation of China(Nos.11172239 and 11372252)the Doctoral Program Foundation of Education Ministry of China(No.20126102110023)the Fundamental Research Funds for the Central Universities(310201401JCQ01001)China Postdoctoral Science Foundation(2013M540724)Shaanxi postdoctoral research projects
文摘Wave propagation in infinitely long hollow sandwich cylinders with prismatic cores is analyzed by the extended Wittriek-Williams (W-W) algorithm and the precise integration method (PIM). The effective elastic constants of prismatic cellular materials are obtained by the homogenization method. By applying the variational principle and introducing the dual variables the canonical equations of Hamiltonian system are constructed. Thereafter, the wave propagation problem is converted to an eigenvalue problem. In numerical examples, the effects of the prismatic cellular topology, the relative density, and the boundary conditions on dispersion relations, respectively, are investigated.