期刊文献+

中厚椭球壳自由振动动力刚度法分析 被引量:5

Free vibration analysis of moderately thick elliptical shells using the dynamic stiffness method
下载PDF
导出
摘要 介绍精确动力刚度法分析中厚椭球壳自由振动具体实施方法,据环向波数不同将中厚椭球壳自由振动分解为一系列确定环向波数的一维振动;利用控制方程Hamilton形式建立动力刚度关系,用常微分方程求解器COLSYS求解控制方程获得单元动力刚度,用Wittrick-Williams算法求得该环向波数下椭球壳自振频率。数值算例给出中厚圆球壳及椭球壳不同边界条件的自振频率,验证动力刚度法高效、可靠、精确。 The application of exact dynamic stiffness method to the free vibration analysis of moderately thick elliptical shells was introduced. The free vibration of moderately thick elliptical shells was decomposed into a series of one- dimensional vibration problems corresponding to structural vibration modes with different circumferential wave numbers. For each one-dimensional vibration problem, the governing equation was written in Hamilton form, from which the dynamic stiffness expression of the one-dimensional problem was derived. The governing equations were solved by using the ordinary differential equations solver COLSYS and the dynamic stiffnesses of elements were obtained. By applying the Wittrick-Williams algorithm, the natural frequencies under the vibration mode with a specific circumferential wave number were found. Numerical examples of moderately thick spherical and elliptical shells with different boundary conditions were given, showing that the dynamic stiffness method is robust, reliable and accurate.
出处 《振动与冲击》 EI CSCD 北大核心 2016年第6期85-90,共6页 Journal of Vibration and Shock
基金 国家自然科学基金项目(51078198) 清华大学自主科研计划(2011THZ03) 江苏省双创博士
关键词 椭球壳 自由振动 动力刚度法 Wittrick-Williams算法 Hamilton形式 elliptical shells free vibration dynamic stiffness method Wittrick-Williams algorithm Hamilton form
  • 相关文献

参考文献20

  • 1Lamb H. On the vibration of a spherical shell [ J ]. Proceedings of the London Mathematical Society, 1883, 14: 50 - 56. 被引量:1
  • 2DiMaggio F L, Silbiger A. Free extensional torsional vibrations of a prolate spheroidal shell [ J ]. Journal of Acoustical Society of America, 1961, 33( 1 ) : 56 -58. 被引量:1
  • 3Penzes L E, Burgin G. Free vibration of thin isotropic oblate- spheroidal shells [ J ]. Journal of Acoustical Society of America, 1966, 39( 1 ) : 8 - 13. 被引量:1
  • 4Niordson F I. Free vibrations of thin elastic spherical shells [ J ]. International Journal of Solids and Structures, 1984, 20 (7) :667 - 687. 被引量:1
  • 5A1-Jumaily A M, Najim F M. An approximation to the vibrations of oblate spheroidal shells [ J ]. Journal of Sound and Vibration, 1997, 204(4) : 561 -574. 被引量:1
  • 6Sai Ram K S, Sreedhar Babu T. Free vibration of composite spherical shell cap with and without a cutout [ J]. Computers and Structures, 2002, 80(23) : 1749 - 1756. 被引量:1
  • 7Hosseini-Hashemi S, Fadaee M. On the free vibration of moderately thick spherical shell panela new exact closed-formprocedure [ J ]. Journal of Sound and Vibration, 2011, 330(17) : 4352 -4367. 被引量:1
  • 8Su Z, Jin G, Ye T. Free vibration analysis of moderately thick functionally graded open shells with general boundary conditions [ J]. Composite Structures, 2014, 117:169 - 186. 被引量:1
  • 9Kang J H, Leissa A W. Three-dimensional vibrations of thick spherical shell segments with variable thickness [ J ]. International Journal of Solids and Structures, 2000, 37 : 4811 -4823. 被引量:1
  • 10Kang J H, Leissa A W. Three-dimensional vibration analysis of solids and hollow hemispheres having varying thicknesses with and without axial conical holes[ J]. Journal of Vibration and Control, 2004, 10 : 199 - 214. 被引量:1

二级参考文献2

共引文献10

同被引文献30

引证文献5

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部