期刊文献+

求解杆系结构自由振动问题的力法 被引量:1

FORCE METHOD FOR FREE VIBRATION PROBLEMS OF FRAMED STRUCTURES
下载PDF
导出
摘要 杆系结构的静力分析有两类方法——力法和位移法,而自由振动分析却仅有位移法。针对这一缺失,提出杆系结构自由振动的力法分析方法。通过放松某个位移约束并施加相应的动内力来建立力法的基本体系。当动内力的频率等于结构自振频率时被放松的约束位移重新得到满足,此时基本体系与原结构等价,由此建立力法的控制方程。该控制方程为频率的非线性方程,对该方程的求解建立了Newton法的迭代格式。数值算例表明该法是一个精确、高效、实用的方法。 There are two major methods in the static analysis of framed structures, i.e. the displacement method and the force method. But only the displacement method is available in free vibration analysis. This paper presents a force method for the free vibration analysis of framed structures. The primary system is established by releasing one of the displacement constraints with the corresponding internal force exposed. The released constraint is satisfied when the trial frequency equals to any of the original structure’s free vibration frequencies. Thus the nonlinear governing equation can be established. The Newton iteration procedure will be set up for solving this nonlinear equation. Typical numerical examples are presented to show the validity, applicability, accuracy and efficiency of the proposed method.
出处 《工程力学》 EI CSCD 北大核心 2006年第S2期1-4,共4页 Engineering Mechanics
基金 教育部博士点基金项目(20020003045) 教育部科技创新工程重大项目培育基金项目(704003)
关键词 力法 自由振动 动力刚度 杆系结构 Wittrick-Williams算法 NEWTON法 force method free vibration dynamic stiffness matrix framed structures wittrick-williams algorithm newton method
  • 相关文献

参考文献10

  • 1袁驷,叶康生,F.W.Williams,D.Kennedy.杆系结构自由振动精确求解的理论和算法[J].工程力学,2005,22(S1):1-6. 被引量:14
  • 2袁驷..程序结构力学[M],2001.
  • 3龙驭球, 包世华..结构力学教程[M],2000.
  • 4《数学手册》编写组编著..数学手册[M].北京:高等教育出版社,1979:1398.
  • 5Wittrick W H,Williams F W.A general algorithm for computing natural frequencies of elastic structures. Q.J.Mech.Appl.Math . 1971 被引量:1
  • 6Williams F W,Wittrick W H.An automatic computational procedure for calculating natural frequencies of skeletal structures. International Journal of Mechanical Sciences . 1970 被引量:1
  • 7Bathe K-J.Finite element procedures. . 1996 被引量:1
  • 8Yuan S,Ye K,Williams F,Kennedy D.Recursive second order convergence method for natural frequencies and modes when using dynamic stiffness matrices. International Journal for Numerical Methods in Engineering . 2003 被引量:1
  • 9Yuan Si,Ye Kangsheng,Williams F.Second order mode-finding method in dynamic matrix methods. Journal of Sound and Vibration . 2004 被引量:1
  • 10Williams F W,Yuan Si,Ye Kangsheng,Kennedy D,Djoudi M.Towards deep and simple understanding of the transcendental eigenproblem of structural vibrations. Journal of Sound and Vibration . 2002 被引量:1

共引文献13

同被引文献9

  • 1李俊,沈荣瀛,华宏星.非对称Bernoulli-Euler薄壁梁的弯扭耦合振动[J].工程力学,2004,21(4):91-96. 被引量:8
  • 2楼梦麟,洪婷婷.预应力梁横向振动分析的模态摄动方法[J].工程力学,2006,23(1):107-111. 被引量:27
  • 3Naguleswaran S. Transverse vibration of an uniform Euler-Bemoulli beam under linearly varying axial force [J]. Journal of Sound and Vibration, 2004, 275(1): 47- 57. 被引量:1
  • 4Timoshenko S P, Young D H. Vibration problems in engineering [M]. New York: John Wiley & Sons, 1974. 被引量:1
  • 5Hashemi M S, Richard M J. Free vibration analysis of axially loaded bending-torsion coupled beams: A dynamic finite element [J]. Computers and Structures, 2000, 77(6): 711-724. 被引量:1
  • 6Williams F W, Wittrick W H. An automatic computational procedure for calculating natural frequencies of skeletal structures [J]. International Journal of Mechanical Sciences, 1970, 12(9): 781-791. 被引量:1
  • 7Williams F W, Yuan S, Ye K. Towards deep and simple understanding of the transcendental eigenvalue problem of structural vibrations [J]. Journal of Sound and Vibration, 2002, 256(4): 681-693. 被引量:1
  • 8Banerjee J R. Dynamic stiffness formulation for structural elements: A general approach [J]. Computers & Structures, 1997, 63(1): 101- 103. 被引量:1
  • 9Timoshenko S P, Gere J M. Theory of elastic stability [M]. New York: McGraw-Hill, 1961. 被引量:1

引证文献1

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部