Dual hesitant fuzzy set (DHFS) is a new generalization of fuzzy set (FS) consisting of two parts (i.e., the membership hesitancy function and the non-membership hesitancy fimction), which confronts several diffe...Dual hesitant fuzzy set (DHFS) is a new generalization of fuzzy set (FS) consisting of two parts (i.e., the membership hesitancy function and the non-membership hesitancy fimction), which confronts several different possible values indicating the epistemic degrees whether certainty or uncertainty. It encompasses fuzzy set (FS), intuitionistic fuzzy set (IFS), and hesitant fuzzy set (HFS) so that it can handle uncertain information more flexibly in the process of decision making. In this paper, we propose some new operations on dual hesitant fuzzy sets based on Einstein t-eonorm and t-norm, study their properties and relationships and then give some dual hesitant fuzzy aggregation operators, which can be considered as the generalizations of some existing ones under fuzzy, intuitionistic fuzzy and hesitant fuzzy environments. Finally, a decision making algorithm under dual hesitant fuzzy environment is given based on the proposed aggregation operators and a numerical example is used to demonstrate the effectiveness of the method.展开更多
Motivated based on the trigonometric t-norm and t-conorm,the aims of this article are to present the trigonometric t-norm and t-conorm operational laws of SvNNs and then to propose the SvNN trigonometric weighted aver...Motivated based on the trigonometric t-norm and t-conorm,the aims of this article are to present the trigonometric t-norm and t-conorm operational laws of SvNNs and then to propose the SvNN trigonometric weighted average and geometric aggregation operators for the modelling of a multiple criteria decision making(MCDM)technique in an inconsistent and indeterminate circumstance.To realize the aims,this paper first proposes the trigonometric t-norm and t-conorm operational laws of SvNNs,which contain the hybrid operations of the tangent and arctangent functions and the cotangent and inverse cotangent functions,and presents the SvNN trigonometric weighted average and geometric operators and their properties.Next,an MCDM technique is proposed in view of the presented two aggregation operators in the circumstance of SvNNs.In the end,an actual case of the choice issue of slope treatment schemes is provided to indicate the practicability and effectivity of the proposed MCDM technique.展开更多
As an generalization of hesitant fuzzy set, interval-valued hesitant fuzzy set and dual hesitant fuzzy set, interval-valued dual hesitant fuzzy set has been proposed and applied in multiple attribute decision making. ...As an generalization of hesitant fuzzy set, interval-valued hesitant fuzzy set and dual hesitant fuzzy set, interval-valued dual hesitant fuzzy set has been proposed and applied in multiple attribute decision making. Hamacher t-norm and t-conorm is an generalization of algebraic and Einstein t-norms and t-conorms. In order to combine interval-valued dual hesitant fuzzy aggregation operators with Hamacher t-norm and t-conorm. We first introduced some new Hamacher operation rules for interval-valued dual hesitant fuzzy elements. Then, several interval-valued dual hesitant fuzzy Hamacher aggregation operators are presented, some desirable properties and their special cases are studied. Further, a new multiple attribute decision making method with these operators is given,and an numerical example is provided to demonstrate that the developed approach is both valid and practical.展开更多
We revise the notion of von Neumann regularity in JB^*-triples by finding a new characterisation in terms of the range of the quadratic operator Q(a). We introduce the quadratic conorm of an element a in a JB^*-tr...We revise the notion of von Neumann regularity in JB^*-triples by finding a new characterisation in terms of the range of the quadratic operator Q(a). We introduce the quadratic conorm of an element a in a JB^*-triple as the minimum reduced modulus of the mapping Q(a). It is shown that the quadratic conorm of a coincides with the infimum of the squares of the points in the triple spectrum of a. It is established that a contractive bijection between JBW^*-triples is a triple isomorphism if, and only if, it preserves quadratic conorms. The continuity of the quadratic conorm and the generalized inverse are discussed. Some applications to C^*-algebras and von Neumann algebras are also studied.展开更多
文摘Dual hesitant fuzzy set (DHFS) is a new generalization of fuzzy set (FS) consisting of two parts (i.e., the membership hesitancy function and the non-membership hesitancy fimction), which confronts several different possible values indicating the epistemic degrees whether certainty or uncertainty. It encompasses fuzzy set (FS), intuitionistic fuzzy set (IFS), and hesitant fuzzy set (HFS) so that it can handle uncertain information more flexibly in the process of decision making. In this paper, we propose some new operations on dual hesitant fuzzy sets based on Einstein t-eonorm and t-norm, study their properties and relationships and then give some dual hesitant fuzzy aggregation operators, which can be considered as the generalizations of some existing ones under fuzzy, intuitionistic fuzzy and hesitant fuzzy environments. Finally, a decision making algorithm under dual hesitant fuzzy environment is given based on the proposed aggregation operators and a numerical example is used to demonstrate the effectiveness of the method.
文摘Motivated based on the trigonometric t-norm and t-conorm,the aims of this article are to present the trigonometric t-norm and t-conorm operational laws of SvNNs and then to propose the SvNN trigonometric weighted average and geometric aggregation operators for the modelling of a multiple criteria decision making(MCDM)technique in an inconsistent and indeterminate circumstance.To realize the aims,this paper first proposes the trigonometric t-norm and t-conorm operational laws of SvNNs,which contain the hybrid operations of the tangent and arctangent functions and the cotangent and inverse cotangent functions,and presents the SvNN trigonometric weighted average and geometric operators and their properties.Next,an MCDM technique is proposed in view of the presented two aggregation operators in the circumstance of SvNNs.In the end,an actual case of the choice issue of slope treatment schemes is provided to indicate the practicability and effectivity of the proposed MCDM technique.
基金Supported by the Natural Science Foundation of Higher Education of Jiangsu Province(18KJB110024)the High Training Funded for Professional Leaders of Higher Vocational Colleges in Jiangsu Province(2018GRFX038)Science and Technology Research Project of Nantong Shipping College(HYKY/2018A03)
文摘As an generalization of hesitant fuzzy set, interval-valued hesitant fuzzy set and dual hesitant fuzzy set, interval-valued dual hesitant fuzzy set has been proposed and applied in multiple attribute decision making. Hamacher t-norm and t-conorm is an generalization of algebraic and Einstein t-norms and t-conorms. In order to combine interval-valued dual hesitant fuzzy aggregation operators with Hamacher t-norm and t-conorm. We first introduced some new Hamacher operation rules for interval-valued dual hesitant fuzzy elements. Then, several interval-valued dual hesitant fuzzy Hamacher aggregation operators are presented, some desirable properties and their special cases are studied. Further, a new multiple attribute decision making method with these operators is given,and an numerical example is provided to demonstrate that the developed approach is both valid and practical.
基金I+D MEC Projects No.MTM 2005-02541,MTM 2004-03882Junta de Andalucfa Grants FQM 0199,FQM 0194,FQM 1215the PCI Project No.A/4044/05 of the Spanish AECI
文摘We revise the notion of von Neumann regularity in JB^*-triples by finding a new characterisation in terms of the range of the quadratic operator Q(a). We introduce the quadratic conorm of an element a in a JB^*-triple as the minimum reduced modulus of the mapping Q(a). It is shown that the quadratic conorm of a coincides with the infimum of the squares of the points in the triple spectrum of a. It is established that a contractive bijection between JBW^*-triples is a triple isomorphism if, and only if, it preserves quadratic conorms. The continuity of the quadratic conorm and the generalized inverse are discussed. Some applications to C^*-algebras and von Neumann algebras are also studied.