Ocean wave propagation is slow, visible and measurable, so a wave theory can be used to approximately predict the imminnent wave force on an offshore structure based on measured, real-time wave elevation near the stru...Ocean wave propagation is slow, visible and measurable, so a wave theory can be used to approximately predict the imminnent wave force on an offshore structure based on measured, real-time wave elevation near the structure. This predictability suggests the development of a more efficient algorithm, than those that have been developed for structures under wind and seismic loads, for the active vibration control of offshore structures. The present study delveops a mutiple-step predictive optimal control (MPOC) algorithm that accounts for multiple step external loading in the determination of optimal control forces. The control efficiency of the newly developed MPOC algorithm has been Investigated under both regular (single-frequency) and irregular (multiple-frequency) wave loads, and compared with that of two other well-known optimal control algorithms: classical linear optimal control(CLOC) and instantaneous optimal control(IOC).展开更多
Active control of bending waves in a periodic beam by the Timoshenko beam theory is concerned. A discussion about the possible wave solutions for periodic beams and their control by forces is presented. Wave propagati...Active control of bending waves in a periodic beam by the Timoshenko beam theory is concerned. A discussion about the possible wave solutions for periodic beams and their control by forces is presented. Wave propagation in a periodic beam is studied. The transfer matrix between two consecutive unit cells is obtained based on the continuity conditions. Wave amplitudes are derived by employing the Bloch-Floquet theorem and the transfer matrix. The influences of the propagating constant on the wave amplitudes are considered. It is shown that vibrations are still needed to be suppressed in the pass-band regions. Wave-suppression strategy described in this paper is employed to eliminate the propagating disturbance of an infinite periodic beam. A minimum wave-suppression strategy is compared with the classical wave-suppression strategy.展开更多
The active control of vibration for a beam subjected to multi-disturbances is investigated based on wave propagating suppression. In this control system, there are the same numbers of the sensors, the signal inputting...The active control of vibration for a beam subjected to multi-disturbances is investigated based on wave propagating suppression. In this control system, there are the same numbers of the sensors, the signal inputting to the controller and the disturbances, but there is only one controller. It is a local control system, the system parameters depend only on the characteristics of the structure bounded by the sensors and the controller, and we need not take into account. the boundary conditions and the properties of structures outside of this held. The system is efficient when a structure vibrates in middle and high frequency regions. Some control design rules are developed from the calculation results.展开更多
Structure-borne sound attenuation at corner interface of two plates with dynamic vibration absorber attached is investigated by wave approach.Equations governing transmission and reflection coefficients are deduced by...Structure-borne sound attenuation at corner interface of two plates with dynamic vibration absorber attached is investigated by wave approach.Equations governing transmission and reflection coefficients are deduced by introducing some non-dimensional coefficients,which help to reveal the physical sense inside and to simplify the analysis.Numerical investigation on vibration energy transmission of bending wave is carried out as well.The results from measurement and prediction show almost the same trends in the simplified experiment.It is found that energy transmission at corner interface depends greatly on whether the dynamic vibration absorber attached acts at resonance and is relatively lower right after the nature frequency of dynamic vibration absorber.Furthermore,the dynamic vibration absorber attached provides less energy transmission of bending wave than blocking mass at the end of "passing band".展开更多
In this paper, the cone model is applied to the vibration analysis of two foundations on a layered soil half space. In the analysis, the total stress field in the subsoil is divided into the free-field and the scatter...In this paper, the cone model is applied to the vibration analysis of two foundations on a layered soil half space. In the analysis, the total stress field in the subsoil is divided into the free-field and the scattering field. Seed's simplified method is adopted for the free-field analysis, while the cone model is proposed for analyzing the dynamic scattering stress wave field. The shear stress field and the compressive stress field in the layered stratum with two scattering sources are calculated by shear cone and compressive cone, respectively. Furthermore, the stress fields in the subsoil with two foundations are divided into six zones, and the P wave and S wave are analyzed in each zone. Numerical results are provided to illustrate features of the added stress field for two surface foundations under vertical and horizontal sinusoidal force excitation. The proposed cone model may be useful in handling some of the complex problems associated with multi-scattering sources.展开更多
基金National Science Foundation of U.S.A.under grant CMS-9503533
文摘Ocean wave propagation is slow, visible and measurable, so a wave theory can be used to approximately predict the imminnent wave force on an offshore structure based on measured, real-time wave elevation near the structure. This predictability suggests the development of a more efficient algorithm, than those that have been developed for structures under wind and seismic loads, for the active vibration control of offshore structures. The present study delveops a mutiple-step predictive optimal control (MPOC) algorithm that accounts for multiple step external loading in the determination of optimal control forces. The control efficiency of the newly developed MPOC algorithm has been Investigated under both regular (single-frequency) and irregular (multiple-frequency) wave loads, and compared with that of two other well-known optimal control algorithms: classical linear optimal control(CLOC) and instantaneous optimal control(IOC).
基金Project supported by the National Natural Science Foundation of China (No. 11102047)Special Funds of Central Basic Scientific Research Operating Expensesthe Fundamental Research Foundation of Harbin Engineering University(No. 002110260746)
文摘Active control of bending waves in a periodic beam by the Timoshenko beam theory is concerned. A discussion about the possible wave solutions for periodic beams and their control by forces is presented. Wave propagation in a periodic beam is studied. The transfer matrix between two consecutive unit cells is obtained based on the continuity conditions. Wave amplitudes are derived by employing the Bloch-Floquet theorem and the transfer matrix. The influences of the propagating constant on the wave amplitudes are considered. It is shown that vibrations are still needed to be suppressed in the pass-band regions. Wave-suppression strategy described in this paper is employed to eliminate the propagating disturbance of an infinite periodic beam. A minimum wave-suppression strategy is compared with the classical wave-suppression strategy.
基金The project supported by the National Natural Science Foundation of China Post Doctorate Science Fund of China
文摘The active control of vibration for a beam subjected to multi-disturbances is investigated based on wave propagating suppression. In this control system, there are the same numbers of the sensors, the signal inputting to the controller and the disturbances, but there is only one controller. It is a local control system, the system parameters depend only on the characteristics of the structure bounded by the sensors and the controller, and we need not take into account. the boundary conditions and the properties of structures outside of this held. The system is efficient when a structure vibrates in middle and high frequency regions. Some control design rules are developed from the calculation results.
基金the Special Foundation of State Key Laboratory of Ocean Engineering of Shanghai Jiaotong Universitythe Foundation of the Education Department of Shandong Province (No.J10LG60)
文摘Structure-borne sound attenuation at corner interface of two plates with dynamic vibration absorber attached is investigated by wave approach.Equations governing transmission and reflection coefficients are deduced by introducing some non-dimensional coefficients,which help to reveal the physical sense inside and to simplify the analysis.Numerical investigation on vibration energy transmission of bending wave is carried out as well.The results from measurement and prediction show almost the same trends in the simplified experiment.It is found that energy transmission at corner interface depends greatly on whether the dynamic vibration absorber attached acts at resonance and is relatively lower right after the nature frequency of dynamic vibration absorber.Furthermore,the dynamic vibration absorber attached provides less energy transmission of bending wave than blocking mass at the end of "passing band".
基金National Natural Science Foundation of China Under Grant No.50678021
文摘In this paper, the cone model is applied to the vibration analysis of two foundations on a layered soil half space. In the analysis, the total stress field in the subsoil is divided into the free-field and the scattering field. Seed's simplified method is adopted for the free-field analysis, while the cone model is proposed for analyzing the dynamic scattering stress wave field. The shear stress field and the compressive stress field in the layered stratum with two scattering sources are calculated by shear cone and compressive cone, respectively. Furthermore, the stress fields in the subsoil with two foundations are divided into six zones, and the P wave and S wave are analyzed in each zone. Numerical results are provided to illustrate features of the added stress field for two surface foundations under vertical and horizontal sinusoidal force excitation. The proposed cone model may be useful in handling some of the complex problems associated with multi-scattering sources.