The elastic scattering properties for collisions between two ^7Li atoms are investigated in the cold and ultracold regimes separately. Based on recent theoretical and experimental results, we present the improved hybr...The elastic scattering properties for collisions between two ^7Li atoms are investigated in the cold and ultracold regimes separately. Based on recent theoretical and experimental results, we present the improved hybrid potentials for the singlet X^1 ∑g^+ and triplet a^3 ∑u^+ ground states of the Li2, Our calculated values for the scattering lengths α and the effective ranges re are compared with previous ones, and found them to be in good agreement. The scattering lengths are 34.6α0 for the singlet state and -27.6α0 for the triplet state. Shape resonances occur in the collisions at low energies. We also calculate the total cross sections and the energy positions of shape resonances for both X^1 ∑g^+ and a^3 ∑u^+ states.展开更多
This paper constructs the interaction potential of the SH(X^2∏) radical by using the coupled-cluster singlesdoubles-approximate-triples theory combining the correlation-consistent quintuple basis set augmented with...This paper constructs the interaction potential of the SH(X^2∏) radical by using the coupled-cluster singlesdoubles-approximate-triples theory combining the correlation-consistent quintuple basis set augmented with the diffuse functions, aug-cc-pV5Z, in the valence range. Employing the potential, it accurately determines the spectroscopic parameters. The present De, Re, ωe, ωeχe, ae and Be values are of 3.7767eV, 0.13424nm, 2699.846 cm^-1, 47.7055 cm^-1, 0.2639cm^-1 and 9.4414 cm^-1, respectively, which are in excellent agreement with those obtained from the measure- ments. A total of 19 vibrational states has been found when J = 0 by solving the radial SchrSdinger equation of nuclear motion. The complete vibrational levels, classical turning points, initial rotation and centrifugal distortion constants when J = 0 are reported for the first time, which are in good accord with the experimental results. The total and various partial-wave cross sections are computed for the elastic collisions of sulfur and hydrogen in their ground states at low temperatures when two atoms approach each other along the SH(X^2∏) potential energy curve. Over the impact energy range from 1.0×10^-11 to 1.0×10^-4 a.u., eight shape resonances have been found in the total elastic cross sections. For each shape resonance, the resonant energy is accurately calculated. Careful investigations have pointed out that these resonances result from the 1 = 0, 1, 2, 3, 4, 6, 7, 8 partial-wave contributions.展开更多
The plasma screening of fast-electron-impact-ionization by excited state(3p) of Hydrogen-like ions was investigated in the first Born approximation with a plasma screening length δ varying from 1000a0 to 10a0. The ...The plasma screening of fast-electron-impact-ionization by excited state(3p) of Hydrogen-like ions was investigated in the first Born approximation with a plasma screening length δ varying from 1000a0 to 10a0. The generalized oscillator strength densities showed dramatic changes: some accessional minima occurred along with a remarkable enhancement in certain continuum-energy domains. The double-differential cross sections exhibit not only the same structures as the Bethe surface for moderate and large momentum transfers, but also a broadened enhancement for small momentum transfers.The single-differential cross sections exhibit a near-zero-energy-enhancement and prodigious multiple-shape resonances,depending on the continuum energy and the plasma screening length. These features are analogous to those of the photoionization cross section. These findings, for both types of cross section, can be explained by processes associated with continuum electrons, as long as the potential has a short-range character.展开更多
The elastic scattering properties for collisions between cold and ultracold 39K atoms in a triplet state are investigated. Based on the recent theoretical and experimental results, the improved hybrid potential is pre...The elastic scattering properties for collisions between cold and ultracold 39K atoms in a triplet state are investigated. Based on the recent theoretical and experimental results, the improved hybrid potential is presented for a triplet α3∑u^+ ground state of K2. Our calculated value of the s-wave scattering length a by using the Numerov method for the triplet state is 79.578α0 and found to be in good agreement with the previous ones. The numbers of bound states are supported by the molecular potential. Pronounced shape resonances appear for the l = 3 partial waves for the α3∑u^+ state. Furthermore, the s-wave scattering cross section, the total cross section and energy positions of shape resonances for the α3∑u^+ state are calculated.展开更多
An interaction potential for an N2(X^1∑g^+) molecule is constructed by using the highly accurate valence internally contracted multireference configuration interaction method and the largest basis set, aug-cc-pV6Z...An interaction potential for an N2(X^1∑g^+) molecule is constructed by using the highly accurate valence internally contracted multireference configuration interaction method and the largest basis set, aug-cc-pV6Z, in the valence range. The potential is used to investigate the elastic scattering of two N atoms at energies from 1.0×10^-11 to 1.0 × 10^-4 a.u. The derived total elastic cross sections are very large and almost constant at ultralow temperatures, and the shape of total elastic cross section curve is mainly dominated by the s-partial wave at very low collision energies. Three shape resonances are found in the total elastic cross sections. Concretely, the first one is very sharp and strong. It results from the g-partial-wave contribution and the resonant energy is 3.645 × 10^-6 a.u. The second one is contributed by the h-partial wave and the resonant energy is 1.752 × 10^-5 a.u. This resonance is broadened by those from the d- and f-partial waves. The third one comes from the l = 6 partial wave contribution and the resonant energy is 3.522 × 10^-5 a.u. This resonance is broadened by those from the g- and h-partial waves. The N2(X1∑g+) molecular parameters, which are determined at the current theoretical level, achieve very high accuracy due to the employment of the largest correlation-consistent basis set in the valence range.展开更多
Interaction potential of the SiD(χ^2П) radical is constructed by using the CCSD(T) theory in combination with the largest correlation-consistent quintuple basis set augmented with the diffuse functions in the wl...Interaction potential of the SiD(χ^2П) radical is constructed by using the CCSD(T) theory in combination with the largest correlation-consistent quintuple basis set augmented with the diffuse functions in the wlence range. Using the interaction potential, the spectroscopic parameters are accurately determined. The present Do, De, Re, ωe, αe and Be values are of 3.0956 eV, 3.1863 eV, 0.15223 nm, 1472.894 cm^-1, 0.07799 cm^-1 and 3.8717 cm^-1, respectively, which are in excellent agreement with the measurements. A total of 26 vibrational states is predicted when J = 0 by solving the radial Schroedinger equation of nuclear motion. The complete vibrational levels, classical turning points, initial rotation and centrifugal distortion constants when J = 0 are reported for the first time, which are in good accord with the available experiments. The total and various partial-wave cross sections are calculated for the elastic collisions between Si and D atoms in their ground states at 1.0× 10^-11-1.0×10^-3 a.u. when the two atoms approach each other along the SiD(χ^2П) potential energy curve. Four shape resonances are found in the total elastic cross sections, and their resonant energies are of 1.73×10^-5, 4.0×10^-5, 6.45×10^-5 and 5.5×10^-4 a.u., respectively. Each shape resonance in the total elastic cross sections is carefully investigated. The results show that the shape of the total elastic cross sections is mainly dominated by the s partial wave at very low temperatures. Because of the weakness of the shape resonances coming from the higher partial waves, most of them are passed into oblivion by the strong s partial-wave elastic cross sections.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No 10174019).
文摘The elastic scattering properties for collisions between two ^7Li atoms are investigated in the cold and ultracold regimes separately. Based on recent theoretical and experimental results, we present the improved hybrid potentials for the singlet X^1 ∑g^+ and triplet a^3 ∑u^+ ground states of the Li2, Our calculated values for the scattering lengths α and the effective ranges re are compared with previous ones, and found them to be in good agreement. The scattering lengths are 34.6α0 for the singlet state and -27.6α0 for the triplet state. Shape resonances occur in the collisions at low energies. We also calculate the total cross sections and the energy positions of shape resonances for both X^1 ∑g^+ and a^3 ∑u^+ states.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 60777012 and 10574039)the Science & Technology Innovation Talents in Universities of Henan Province in China (Grant No 2008HASTIT0 08)
文摘This paper constructs the interaction potential of the SH(X^2∏) radical by using the coupled-cluster singlesdoubles-approximate-triples theory combining the correlation-consistent quintuple basis set augmented with the diffuse functions, aug-cc-pV5Z, in the valence range. Employing the potential, it accurately determines the spectroscopic parameters. The present De, Re, ωe, ωeχe, ae and Be values are of 3.7767eV, 0.13424nm, 2699.846 cm^-1, 47.7055 cm^-1, 0.2639cm^-1 and 9.4414 cm^-1, respectively, which are in excellent agreement with those obtained from the measure- ments. A total of 19 vibrational states has been found when J = 0 by solving the radial SchrSdinger equation of nuclear motion. The complete vibrational levels, classical turning points, initial rotation and centrifugal distortion constants when J = 0 are reported for the first time, which are in good accord with the experimental results. The total and various partial-wave cross sections are computed for the elastic collisions of sulfur and hydrogen in their ground states at low temperatures when two atoms approach each other along the SH(X^2∏) potential energy curve. Over the impact energy range from 1.0×10^-11 to 1.0×10^-4 a.u., eight shape resonances have been found in the total elastic cross sections. For each shape resonance, the resonant energy is accurately calculated. Careful investigations have pointed out that these resonances result from the 1 = 0, 1, 2, 3, 4, 6, 7, 8 partial-wave contributions.
基金supported by the National Basic Research Program of China(Grant No.2013CB922200)the National Natural Science Foundation of China(Grant Nos.11005049,11025417,and 10974021)
文摘The plasma screening of fast-electron-impact-ionization by excited state(3p) of Hydrogen-like ions was investigated in the first Born approximation with a plasma screening length δ varying from 1000a0 to 10a0. The generalized oscillator strength densities showed dramatic changes: some accessional minima occurred along with a remarkable enhancement in certain continuum-energy domains. The double-differential cross sections exhibit not only the same structures as the Bethe surface for moderate and large momentum transfers, but also a broadened enhancement for small momentum transfers.The single-differential cross sections exhibit a near-zero-energy-enhancement and prodigious multiple-shape resonances,depending on the continuum energy and the plasma screening length. These features are analogous to those of the photoionization cross section. These findings, for both types of cross section, can be explained by processes associated with continuum electrons, as long as the potential has a short-range character.
基金Project supported by the National Natural Science Foundation of China (Grant No 10574039) and the Science Foundation for Young Scientists of Henan Normal University, China (Grant No 2005004).
文摘The elastic scattering properties for collisions between cold and ultracold 39K atoms in a triplet state are investigated. Based on the recent theoretical and experimental results, the improved hybrid potential is presented for a triplet α3∑u^+ ground state of K2. Our calculated value of the s-wave scattering length a by using the Numerov method for the triplet state is 79.578α0 and found to be in good agreement with the previous ones. The numbers of bound states are supported by the molecular potential. Pronounced shape resonances appear for the l = 3 partial waves for the α3∑u^+ state. Furthermore, the s-wave scattering cross section, the total cross section and energy positions of shape resonances for the α3∑u^+ state are calculated.
基金Project supported by the Program for Science and Technology Innovation Talents in Universities of Henan Province, China (Grant No. 2008HASTIT008)the National Natural Science Foundation of China (Grant Nos. 60777012 and 10874064)
文摘An interaction potential for an N2(X^1∑g^+) molecule is constructed by using the highly accurate valence internally contracted multireference configuration interaction method and the largest basis set, aug-cc-pV6Z, in the valence range. The potential is used to investigate the elastic scattering of two N atoms at energies from 1.0×10^-11 to 1.0 × 10^-4 a.u. The derived total elastic cross sections are very large and almost constant at ultralow temperatures, and the shape of total elastic cross section curve is mainly dominated by the s-partial wave at very low collision energies. Three shape resonances are found in the total elastic cross sections. Concretely, the first one is very sharp and strong. It results from the g-partial-wave contribution and the resonant energy is 3.645 × 10^-6 a.u. The second one is contributed by the h-partial wave and the resonant energy is 1.752 × 10^-5 a.u. This resonance is broadened by those from the d- and f-partial waves. The third one comes from the l = 6 partial wave contribution and the resonant energy is 3.522 × 10^-5 a.u. This resonance is broadened by those from the g- and h-partial waves. The N2(X1∑g+) molecular parameters, which are determined at the current theoretical level, achieve very high accuracy due to the employment of the largest correlation-consistent basis set in the valence range.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 60777012 and 10574039)the Programfor Science & Technology Innovation Talents in Universities of Henan Province in China (Grant No 2008HASTIT008)
文摘Interaction potential of the SiD(χ^2П) radical is constructed by using the CCSD(T) theory in combination with the largest correlation-consistent quintuple basis set augmented with the diffuse functions in the wlence range. Using the interaction potential, the spectroscopic parameters are accurately determined. The present Do, De, Re, ωe, αe and Be values are of 3.0956 eV, 3.1863 eV, 0.15223 nm, 1472.894 cm^-1, 0.07799 cm^-1 and 3.8717 cm^-1, respectively, which are in excellent agreement with the measurements. A total of 26 vibrational states is predicted when J = 0 by solving the radial Schroedinger equation of nuclear motion. The complete vibrational levels, classical turning points, initial rotation and centrifugal distortion constants when J = 0 are reported for the first time, which are in good accord with the available experiments. The total and various partial-wave cross sections are calculated for the elastic collisions between Si and D atoms in their ground states at 1.0× 10^-11-1.0×10^-3 a.u. when the two atoms approach each other along the SiD(χ^2П) potential energy curve. Four shape resonances are found in the total elastic cross sections, and their resonant energies are of 1.73×10^-5, 4.0×10^-5, 6.45×10^-5 and 5.5×10^-4 a.u., respectively. Each shape resonance in the total elastic cross sections is carefully investigated. The results show that the shape of the total elastic cross sections is mainly dominated by the s partial wave at very low temperatures. Because of the weakness of the shape resonances coming from the higher partial waves, most of them are passed into oblivion by the strong s partial-wave elastic cross sections.