With the growing popularity of online social network, trust plays a more and more important role in connecting people to each other. We rely on our personal trust to accept recommendations, to make purchase decisions ...With the growing popularity of online social network, trust plays a more and more important role in connecting people to each other. We rely on our personal trust to accept recommendations, to make purchase decisions and to select transaction partners in the online community. Therefore, how to obtain trust relationships through mining online social networks becomes an important research topic. There are several shortcomings of existing trust mining methods. First, trust is category-dependent. However, most of the methods overlook the category attribute of trust relationships, which leads to low accuracy in trust calculation. Second, since the data in online social networks cannot be understood and processed by machines directly, traditional mining methods require much human effort and are not easily applied to other applications. To solve the above problems, we propose a semantic-based trust reasoning mechanism to mine trust relationships from online social networks automatically. We emphasize the category attribute of pairwise relationships and utilize Semantic Web technologies to build a domain ontology for data communication and knowledge sharing. We exploit role-based and behavior-based reasoning functions to infer implicit trust relationships and category-specific trust relationships. We make use of path expressions to extend reasoning rules so that the mining process can be done directly without much human effort. We perform experiments on real-life data extracted from Epinions. The experimental results verify the effectiveness and wide application use of our proposed method.展开更多
Computational techniques have been adopted in medi-cal and biological systems for a long time. There is no doubt that the development and application of computational methods will render great help in better understan...Computational techniques have been adopted in medi-cal and biological systems for a long time. There is no doubt that the development and application of computational methods will render great help in better understanding biomedical and biological functions. Large amounts of datasets have been produced by biomedical and biological experiments and simulations. In order for researchers to gain knowledge from origi- nal data, nontrivial transformation is necessary, which is regarded as a critical link in the chain of knowledge acquisition, sharing, and reuse. Challenges that have been encountered include: how to efficiently and effectively represent human knowledge in formal computing models, how to take advantage of semantic text mining techniques rather than traditional syntactic text mining, and how to handle security issues during the knowledge sharing and reuse. This paper summarizes the state-of-the-art in these research directions. We aim to provide readers with an introduction of major computing themes to be applied to the medical and biological research.展开更多
基金supported by the National Natural Science Foundation of China under Grant No. 61100183the Natural Science Foundation of Zhejiang Province of China under Grant No. Y1110477the Science Foundation of Zhejiang Sci-Tech University under Grant No. 0907838-Y
文摘With the growing popularity of online social network, trust plays a more and more important role in connecting people to each other. We rely on our personal trust to accept recommendations, to make purchase decisions and to select transaction partners in the online community. Therefore, how to obtain trust relationships through mining online social networks becomes an important research topic. There are several shortcomings of existing trust mining methods. First, trust is category-dependent. However, most of the methods overlook the category attribute of trust relationships, which leads to low accuracy in trust calculation. Second, since the data in online social networks cannot be understood and processed by machines directly, traditional mining methods require much human effort and are not easily applied to other applications. To solve the above problems, we propose a semantic-based trust reasoning mechanism to mine trust relationships from online social networks automatically. We emphasize the category attribute of pairwise relationships and utilize Semantic Web technologies to build a domain ontology for data communication and knowledge sharing. We exploit role-based and behavior-based reasoning functions to infer implicit trust relationships and category-specific trust relationships. We make use of path expressions to extend reasoning rules so that the mining process can be done directly without much human effort. We perform experiments on real-life data extracted from Epinions. The experimental results verify the effectiveness and wide application use of our proposed method.
文摘Computational techniques have been adopted in medi-cal and biological systems for a long time. There is no doubt that the development and application of computational methods will render great help in better understanding biomedical and biological functions. Large amounts of datasets have been produced by biomedical and biological experiments and simulations. In order for researchers to gain knowledge from origi- nal data, nontrivial transformation is necessary, which is regarded as a critical link in the chain of knowledge acquisition, sharing, and reuse. Challenges that have been encountered include: how to efficiently and effectively represent human knowledge in formal computing models, how to take advantage of semantic text mining techniques rather than traditional syntactic text mining, and how to handle security issues during the knowledge sharing and reuse. This paper summarizes the state-of-the-art in these research directions. We aim to provide readers with an introduction of major computing themes to be applied to the medical and biological research.