期刊文献+

基于综合推理的多媒体语义挖掘和跨媒体检索 被引量:12

Cross-Media Retrieval Based on Synthesis Reasoning Model
下载PDF
导出
摘要 为了更准确地进行跨媒体检索,需要挖掘、学习不同类型多媒体对象之间的语义关联,为此提出一种基于综合推理模型的多媒体语义挖掘和跨媒体检索技术.首先根据多媒体对象的底层特征构造推理源,根据多媒体对象的共生关系构造影响源场来进行综合推理,并构造出多媒体语义空间;然后针对不同检索例子,根据伪相关反馈为每一个检索例子自适应地选择不同的检索方法进行跨媒体检索.为了处理检索例子不在训练集合内的情况,提出了两阶段学习方法完成检索;同时还提出了一种基于日志的长程反馈学习算法,以提高系统性能.实验结果证明,该技术能够准确地挖掘多媒体语义,多媒体文档检索和跨媒体检索效果准确且稳定. To gain better cross-media retrieval performance, it is crucial to mine the semantic correlations among the heterogeneous multimedia data. In this paper, we adopt the synthesis reasoning model as the underlying mechanism to mining the multimedia semantics for cross-media retrieval. We construct the synthesis reasoning sources according to the multimedia object low-level features and the reasoning source intensity field according to the multimedia co-existence information. A series of multimedia semantic spaces are built by spectral method after synthesis reasoning. The cross-media retrieval is performed on a per-query basis by which different retrieval methods are adopted for different queries. Both short term and long term relevance feedback are learned to introduce the new multimedia objects into the multimedia semantic spaces which were not in the training set, to refine the reasoning result. Experimental results show that the proposed methods can be used to accurately mine the multimedia semantics and the approach of cross-media retrieval is accurate and stable.
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2009年第9期1307-1314,共8页 Journal of Computer-Aided Design & Computer Graphics
基金 国家杰出青年基金(60525108) 国家自然科学基金(60533090) 浙江省科技计(2008C13075)
关键词 综合推理 多媒体语义挖掘 跨媒体检索 多媒体文档 synthesis reasoning multimedia semantics mining cross-media retrieval multimedia document
  • 相关文献

参考文献18

  • 1Lew M S, Sebe N. Djeraba C multimedia information retrieval: Content based the art and challenges [J]. ACM Transactions on Muhin, edia Computing Communications and Applications, 2006, 2(1): 1 19. 被引量:1
  • 2Wang J Z, Li J. Learning based linguistic indexing of pictures with 2-D MHMMs[C]//Proceedings of the 10th Annual ACM International Conference on Multimedia, Juan Ires Pins. 2002:436-445. 被引量:1
  • 3Chang E, Goh K, Sychay G, et al. CBSA: content based soft annotation for multimodal image retrieval using Bayes point machines [J]. IEEE Transactions on Circuits and Systems for Video Technology, 2003, 13(1): 26-38. 被引量:1
  • 4He X F, Ma W Y, Zhang H J. Learning an image manifold for retrieval [C]//Proceedings of the 12th Annual ACM International Conference on Multimedia, New York, 2004: 17-23. 被引量:1
  • 5Maddage N C, Xu C S, Nankanhalli M S, el al. Contentbased music structure analysis with applications to music semantics understanding [C] //Proceedings of the 12th Annual ACM International Conference on Multimedia, New York, 2004:112-119. 被引量:1
  • 6Guo G D, Li S Z. Content-based audio classification and retrieval by support vector machines[J]. IEEE Transactions on Neural Networks, 2003, 14(1): 209-215. 被引量:1
  • 7Wold E, Blum T, Keislar D, et al. Content based classification, search, and retrieval of audio [J]. IEEE Multimedia, 1996, 3(3): 27-36. 被引量:1
  • 8Smoliar S W, Zhang H J. Conten~ based video indexing and retrieval[J], IEEE Multimedia, 1994, 1(2): 62-72. 被引量:1
  • 9Fan J P, Elmagarmid A K, Zhu X Q, et al. ClassView: hierarchical video shot classification, indexing, and accessing [J]. IEEE Transactions on Multimedia. 2004, 6(1): 70-86. 被引量:1
  • 10Muller M, Roder T, Clausen M, Efficient content-based retrieval of motion capture data [C] // Computer Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH, Los Angeles, 2005: 677-685. 被引量:1

二级参考文献20

  • 1李未,计算机科学,1993年,20卷,1页 被引量:1
  • 2潘云鹤,浙江大学学报,1993年,27卷,3期,363页 被引量:1
  • 3潘云鹤,模式识别与人工智能,1991年,2期,7页 被引量:1
  • 4何新贵,知识处理与专家系统,1990年 被引量:1
  • 5钱学森,关于思维科学,1986年 被引量:1
  • 6Zhang Hong-Jiang, Zhong Di. Schema for visual featurebased image indexing Proceedings of the SPIE, Storage and Retrieval for Image and Video Database. San Diego, USA, 1995:36-46. 被引量:1
  • 7David R H, John S T. KCCA for different level precision in content-based image retrieval Proceedings of the 3rd International Workshop on Content-Based Multimedia Indexing. Rennes, France, 2003:51-56. 被引量:1
  • 8Snoek C G M, Worring M, Geusebroek J M. Semantic video search engine Proceedings of the TRECVID Workshop. Gaithersburg, USA, 2004:102-105. 被引量:1
  • 9Zhao Xue-Yan, Zhuang Yue-Ting, Wu Fei. Audio clip retrieval with fast relevance feedback based on constrained fuzzy clustering and stored Index table Proceedings of the Pacific-Rim Conference on Multimedia. Taiwan, China, 2002:237-244. 被引量:1
  • 10McGurk J M. Hearing lips and seeing voices. Nature, 1976, 264(5588) : 746-748. 被引量:1

共引文献61

同被引文献221

引证文献12

二级引证文献52

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部