摘要
在产品创新设计过程中,设计意象语义挖掘一直是研究热点。通过对大数据的挖掘,能使设计师获取更准确的设计意象语义,从而为产品创新设计的研究起到有效的数据支撑。对大数据挖掘方法进行对比研究,总结了产品设计意象语义的挖掘机制;通过语义概念化,对产品设计意象语义进行形式化表征,形成知识图谱,为产品设计知识的共享与重用提供了思路和方法。总结出以马自达汽车设计为对象的产品设计意象语义挖掘流程,并通过对意象语义的概念化形成知识图谱。
In the process of product innovation design,design image semantic mining has always been a research hotspot.Through the mining of big data,designers can obtain more accurate design image semantics,thus providing effective data support for the research of product innovation design.knowledge,thus effectively supporting the research on intelligent design.Using the methods of comparative study of big data mining methods,the mining mechanism of product design image semantics is summarized.Through semantic conceptualization,product design image semantics were formally represented,and a knowledge map was formed,which provided ideas and ideas for the sharing and reuse of product design knowledge.research and summarize the viewpoints of relevant literature,and comprehensively analyze and expound the characteristics of image semantic mining methods in the context of big data,the process of image semantic mining,semantic analysis processing and visual representation methods.The process of product design image semantic mining with Mazda car design as the object is summarized,and a knowledge graph is formed by conceptualizing the image semantics.
出处
《设计》
2023年第16期84-87,共4页
Design
基金
甘肃省自然科学基金(20JR10RA165)。
关键词
产品设计
意象语义
大数据
语义挖掘
知识表征
Product design
Image semantics
Big data
Semantic mining
Knowledge representation