In Tokomak, the support of the ELM coil, which is close to the plasma and subject to high radiation level, high temperature and high magnetic field, is used to transport and bear the thermal load due to thermal expans...In Tokomak, the support of the ELM coil, which is close to the plasma and subject to high radiation level, high temperature and high magnetic field, is used to transport and bear the thermal load due to thermal expansion and the alternating electromagnetic force generated by high magnetic field and AC current in the coil. According to the feature of ITER ELM coil, the mechanical performance of rigid and flexible supports under different high nuclear heat levels is studied. Results show that flexible supports have more excellent performance in high nuclear heat condition than rigid supports. Concerning thermal and electromagnetic (EM) loads, optimized results further prove that flexible supports have better mechanical performance than rigid ones. Through these studies, reasonable support design can be provided for the ELM coils or similar coils in Tokamak based on the nuclear heat level.展开更多
Vacuum vessel of the HT-7U is a fully welded toroidal structure with a noncircular cross-section nested in the bore of the TF coils. According to the requirement of the physics design, sixteen horizontal ports on outb...Vacuum vessel of the HT-7U is a fully welded toroidal structure with a noncircular cross-section nested in the bore of the TF coils. According to the requirement of the physics design, sixteen horizontal ports on outboard mid-plane and thirty-two vertical ports on the top and bottom are designed for diagnostics, plasma heating, current driving, vacuum pumping and gas puffing. Bellows on these port necks are used for flexible components to absorb the relative displacement in radial and vertical directions due to external load, thermal expansion or contrac-tion and assembly tolerance, and also used for isolation of mechanical vibration. For the support system of vacuum vessel it should be not only strong enough to withstand forces acting on the vessel interior components and the vessel itself due to the dead weight and electromagnetic inter-actions during plasma disruption, but also sufficiently flexible to be suited to thermal expansion during baking. In order to solve this contradiction a new kind of low rigid support has been designed, which has a perfectly rigid in vertical direction and perfectly soft in radial direction. Some three-dimension finite element COSMOS models were performed to analyze their structural strength, stiffness and fatigue life, with an emphasis on the static stress analysis. The load spectra during vacuum vessel operation were also simulated on these models in the view of fatigue design. It was confirmed that the bellows and support had sufficient strength in the designed range of the load conditions. The results showed that the peak stress on bellows was 87 MPa and on the support system was 97 MPa. Now all kinds of bellows and support system have been designed. In order to accumulate some engineering experiences and probe into some molding die and welding technologies, prototypical bellows and support system have been fabricated. At the same time a mechanical testing apparatus was designed for proof tests on the prototypical bellows and support to verify their functional and structure c展开更多
文摘In Tokomak, the support of the ELM coil, which is close to the plasma and subject to high radiation level, high temperature and high magnetic field, is used to transport and bear the thermal load due to thermal expansion and the alternating electromagnetic force generated by high magnetic field and AC current in the coil. According to the feature of ITER ELM coil, the mechanical performance of rigid and flexible supports under different high nuclear heat levels is studied. Results show that flexible supports have more excellent performance in high nuclear heat condition than rigid supports. Concerning thermal and electromagnetic (EM) loads, optimized results further prove that flexible supports have better mechanical performance than rigid ones. Through these studies, reasonable support design can be provided for the ELM coils or similar coils in Tokamak based on the nuclear heat level.
基金This work was supported by the National Meg-Science Engineering Project of the Chinese Gorernment
文摘Vacuum vessel of the HT-7U is a fully welded toroidal structure with a noncircular cross-section nested in the bore of the TF coils. According to the requirement of the physics design, sixteen horizontal ports on outboard mid-plane and thirty-two vertical ports on the top and bottom are designed for diagnostics, plasma heating, current driving, vacuum pumping and gas puffing. Bellows on these port necks are used for flexible components to absorb the relative displacement in radial and vertical directions due to external load, thermal expansion or contrac-tion and assembly tolerance, and also used for isolation of mechanical vibration. For the support system of vacuum vessel it should be not only strong enough to withstand forces acting on the vessel interior components and the vessel itself due to the dead weight and electromagnetic inter-actions during plasma disruption, but also sufficiently flexible to be suited to thermal expansion during baking. In order to solve this contradiction a new kind of low rigid support has been designed, which has a perfectly rigid in vertical direction and perfectly soft in radial direction. Some three-dimension finite element COSMOS models were performed to analyze their structural strength, stiffness and fatigue life, with an emphasis on the static stress analysis. The load spectra during vacuum vessel operation were also simulated on these models in the view of fatigue design. It was confirmed that the bellows and support had sufficient strength in the designed range of the load conditions. The results showed that the peak stress on bellows was 87 MPa and on the support system was 97 MPa. Now all kinds of bellows and support system have been designed. In order to accumulate some engineering experiences and probe into some molding die and welding technologies, prototypical bellows and support system have been fabricated. At the same time a mechanical testing apparatus was designed for proof tests on the prototypical bellows and support to verify their functional and structure c