In this paper, we are concerned with the global existence of smooth solutions for the one dimen- sional relativistic Euler-Poisson equations: Combining certain physical background, the relativistic Euler-Poisson mode...In this paper, we are concerned with the global existence of smooth solutions for the one dimen- sional relativistic Euler-Poisson equations: Combining certain physical background, the relativistic Euler-Poisson model is derived mathematically. By using an invariant of Lax's method, we will give a sufficient condition for the existence of a global smooth solution to the one-dimensional Euler-Poisson equations with repulsive force.展开更多
In this paper, using the characteristic analysis method, we study the relativistic Euler equations of conservation laws in energy and momentum in special relativity. The interactions of elementary waves for the relati...In this paper, using the characteristic analysis method, we study the relativistic Euler equations of conservation laws in energy and momentum in special relativity. The interactions of elementary waves for the relativistic Euler equations are shown. The collision of two shocks, two centered rarefaction waves, a shock and a rarefaction wave yield corresponding ransmitted waves. The overtaking of two shocks appears a transmitted shock wave, together with a reflected centered rarefaction wave.展开更多
The dynamics of inviscid multi-component relativistic fluids may be modeled by the relativistic Euler equations, augmented by one (or more) additional species equation(s). We use the high-resolution staggered central ...The dynamics of inviscid multi-component relativistic fluids may be modeled by the relativistic Euler equations, augmented by one (or more) additional species equation(s). We use the high-resolution staggered central schemes to solve these equations. The equilibrium states for each component are coupled in space and time to have a common temperature and velocity. The current schemes can handle strong shocks and the oscillations near the interfaces are negligible, which usually happens in the multi-component flows. The schemes also guarantee the exact mass conservation for each component, the exact conservation of total momentum, and energy in the whole particle system. The central schemes are robust, reliable, compact and easy to implement. Several one- and two-dimensional numerical test cases are included in this paper, which validate the application of these schemes to relativistic multi-component flows.展开更多
基金supported in part by Chinese National Natural Science Foundation under grant 11201308Science Foundation for the Excellent Youth Scholars of Shanghai Municipal Education Commission(ZZyyyl2025)the innovation program of Shanghai Municipal Education Commission(13ZZ136)
文摘In this paper, we are concerned with the global existence of smooth solutions for the one dimen- sional relativistic Euler-Poisson equations: Combining certain physical background, the relativistic Euler-Poisson model is derived mathematically. By using an invariant of Lax's method, we will give a sufficient condition for the existence of a global smooth solution to the one-dimensional Euler-Poisson equations with repulsive force.
基金Project supported by the National Natural Science Foundation of China (Grant No.10671120)
文摘In this paper, using the characteristic analysis method, we study the relativistic Euler equations of conservation laws in energy and momentum in special relativity. The interactions of elementary waves for the relativistic Euler equations are shown. The collision of two shocks, two centered rarefaction waves, a shock and a rarefaction wave yield corresponding ransmitted waves. The overtaking of two shocks appears a transmitted shock wave, together with a reflected centered rarefaction wave.
文摘The dynamics of inviscid multi-component relativistic fluids may be modeled by the relativistic Euler equations, augmented by one (or more) additional species equation(s). We use the high-resolution staggered central schemes to solve these equations. The equilibrium states for each component are coupled in space and time to have a common temperature and velocity. The current schemes can handle strong shocks and the oscillations near the interfaces are negligible, which usually happens in the multi-component flows. The schemes also guarantee the exact mass conservation for each component, the exact conservation of total momentum, and energy in the whole particle system. The central schemes are robust, reliable, compact and easy to implement. Several one- and two-dimensional numerical test cases are included in this paper, which validate the application of these schemes to relativistic multi-component flows.