降水是最难预报的天气要素之一。在预报站点和周围站点之间建立多层感知器,利用主成分分析对环流背景场和局地气象要素差异等13个因子降维,作为多层感知器的输入,并采用贪心算法选择多层感知器的结构。通过联合多个多层感知器同时预报降...降水是最难预报的天气要素之一。在预报站点和周围站点之间建立多层感知器,利用主成分分析对环流背景场和局地气象要素差异等13个因子降维,作为多层感知器的输入,并采用贪心算法选择多层感知器的结构。通过联合多个多层感知器同时预报降水,提出一种动态区域联合短时降水预报方法。实验证明该方法降水预报效果较好,3小时降水预报能力优于ECMWF(European Centre for Medium-Range Weather Forecasts)和日本气象厅(JMA)数值模式。展开更多
It is difficult to make full use of the electrical energy of the power battery for extended-range electric tractors because the battery’s state of charge may be relatively high at the end of the running mileage.To ad...It is difficult to make full use of the electrical energy of the power battery for extended-range electric tractors because the battery’s state of charge may be relatively high at the end of the running mileage.To address this situation,this paper aimed to study the control parameter adjustment in relation to the power battery’s electrical consumption and the diesel engine’s fuel consumption energy management strategy.Based on the AVL-Cruise simulation platform,the vehicle model of the tractor was established,and the control module of AVL-Cruise was used to compile the energy management strategy.In order to verify the superiority of the proposed strategy,the contrast strategy was employed in terms of the diesel engine start and stop control plus fixed point energy management strategy(FPEMS).The applicability of the proposed strategy was tested through continuous transfer operation and the small area deep loosening operation.The simulation results show that the proposed strategy was of good applicability.Compared with the FPEMS,the fuel consumption reduced significantly,and the electrical consumption of the power battery increased obviously.展开更多
p-GaN cap layer has been recognized as a commercial technology to manufacture enhanced-mode(E-mode)AlGaN/GaN high electron mobility transistor(HEMT);however,the difficult activation of Mg doping and etching damage of ...p-GaN cap layer has been recognized as a commercial technology to manufacture enhanced-mode(E-mode)AlGaN/GaN high electron mobility transistor(HEMT);however,the difficult activation of Mg doping and etching damage of p-GaN limit the further improvement of device performance.Thus,the more cost-effective cap layer has attracted wide attention in GaN-based HEMT.In this paper,p-type tin monoxide(p-SnO)was firstly investigated as a gate cap to realize E-mode AlGaN/GaN HEMT by both Silvaco simulation and experiment.Simulation results show that by simply adjusting the thickness(50 to 200 nm)or the doping concentration(3×10^(17)to 3×10^(18)cm^(-3))of p-SnO,the threshold voltage(V_(th))of HEMT can be continuously adjusted in the range from zero to 10 V.Simultaneously,the device demonstrated a drain current density above 120 mA mm^(-1),a gate breakdown voltage(V_(BG))of 7.5 V and a device breakdown voltage(V_(B))of 2470 V.What is more,the etching-free AlGaN/GaN HEMT with sputtered p-SnO gate cap were fabricated,and achieved a positive V_(th) of 1 V,V_(BG) of 4.2 V and V_(B) of 420 V,which confirms the application potential of the p-SnO film as a gate cap layer for E-mode GaN-based HEMT.This work is instructive to the design and manufacture of p-oxide gate cap E-mode AlGaN/GaN HEMT with low cost.展开更多
文摘降水是最难预报的天气要素之一。在预报站点和周围站点之间建立多层感知器,利用主成分分析对环流背景场和局地气象要素差异等13个因子降维,作为多层感知器的输入,并采用贪心算法选择多层感知器的结构。通过联合多个多层感知器同时预报降水,提出一种动态区域联合短时降水预报方法。实验证明该方法降水预报效果较好,3小时降水预报能力优于ECMWF(European Centre for Medium-Range Weather Forecasts)和日本气象厅(JMA)数值模式。
基金supported by the National Key Research and Development Program of China during the 13th Five-Year Plan Period(No.2016YFD0701002)Henan University of Science and Technology Innovation Talents Support Program(No.18HASTIT026)Research Program of Application Foundation and Advanced Technology of Henan Province(No.152300410080).
文摘It is difficult to make full use of the electrical energy of the power battery for extended-range electric tractors because the battery’s state of charge may be relatively high at the end of the running mileage.To address this situation,this paper aimed to study the control parameter adjustment in relation to the power battery’s electrical consumption and the diesel engine’s fuel consumption energy management strategy.Based on the AVL-Cruise simulation platform,the vehicle model of the tractor was established,and the control module of AVL-Cruise was used to compile the energy management strategy.In order to verify the superiority of the proposed strategy,the contrast strategy was employed in terms of the diesel engine start and stop control plus fixed point energy management strategy(FPEMS).The applicability of the proposed strategy was tested through continuous transfer operation and the small area deep loosening operation.The simulation results show that the proposed strategy was of good applicability.Compared with the FPEMS,the fuel consumption reduced significantly,and the electrical consumption of the power battery increased obviously.
基金supported by the National Natural Science Foundation of China(62003151,61925404,62074122,and 61904139)the Key Research and Development Program in Shaanxi Province(2016KTZDGY-03-01)。
文摘p-GaN cap layer has been recognized as a commercial technology to manufacture enhanced-mode(E-mode)AlGaN/GaN high electron mobility transistor(HEMT);however,the difficult activation of Mg doping and etching damage of p-GaN limit the further improvement of device performance.Thus,the more cost-effective cap layer has attracted wide attention in GaN-based HEMT.In this paper,p-type tin monoxide(p-SnO)was firstly investigated as a gate cap to realize E-mode AlGaN/GaN HEMT by both Silvaco simulation and experiment.Simulation results show that by simply adjusting the thickness(50 to 200 nm)or the doping concentration(3×10^(17)to 3×10^(18)cm^(-3))of p-SnO,the threshold voltage(V_(th))of HEMT can be continuously adjusted in the range from zero to 10 V.Simultaneously,the device demonstrated a drain current density above 120 mA mm^(-1),a gate breakdown voltage(V_(BG))of 7.5 V and a device breakdown voltage(V_(B))of 2470 V.What is more,the etching-free AlGaN/GaN HEMT with sputtered p-SnO gate cap were fabricated,and achieved a positive V_(th) of 1 V,V_(BG) of 4.2 V and V_(B) of 420 V,which confirms the application potential of the p-SnO film as a gate cap layer for E-mode GaN-based HEMT.This work is instructive to the design and manufacture of p-oxide gate cap E-mode AlGaN/GaN HEMT with low cost.