针对目前机械振动信号频带越来越宽,依据传统香农-内奎斯特采样定理进行数据采集时,将会得到巨量振动数据,对存储、传输和处理带来困难的问题,提出了基于K-SVD字典学习算法的稀疏表示振动信号压缩测量重构方法。首先分析了振动信号在基...针对目前机械振动信号频带越来越宽,依据传统香农-内奎斯特采样定理进行数据采集时,将会得到巨量振动数据,对存储、传输和处理带来困难的问题,提出了基于K-SVD字典学习算法的稀疏表示振动信号压缩测量重构方法。首先分析了振动信号在基于K-奇异值分解(K-Singular value decomposition,K-SVD)字典学习算法得到的过完备字典上的近似稀疏性,即可压缩性;然后利用高斯随机矩阵对振动信号进行压缩测量;最后基于压缩测量值采用正交匹配追踪算法对原始振动信号进行重构。仿真测试结果表明,当振动信号压缩率在60%~90%时,基于K-SVD字典学习算法构造的过完备字典比基于离散余弦过完备字典压缩感知重构相对误差小。该方法既可以得到较高的信号压缩比又有着精确的信号重构性能,在不丢失振动信息的情况下,大大减少了原始振动数据量。展开更多
该文基于多通道脑电信号时空特性构建非正交变换过完备字典,准确稀疏表示蕴含时空相关性信息的多通道脑电信号,提高基于时空稀疏贝叶斯学习模型的多通道脑电信号压缩感知联合重构算法性能。实验选用eegmmidb脑电数据库的多通道脑电信号...该文基于多通道脑电信号时空特性构建非正交变换过完备字典,准确稀疏表示蕴含时空相关性信息的多通道脑电信号,提高基于时空稀疏贝叶斯学习模型的多通道脑电信号压缩感知联合重构算法性能。实验选用eegmmidb脑电数据库的多通道脑电信号验证所提算法有效性。结果表明,基于过完备字典稀疏表示的多通道脑电信号,能够为多通道脑电信号压缩感知重构算法提供更多的时空相关性信息,比传统多通道脑电信号压缩感知重构算法所得的信噪比值提高近12 d B,重构时间减少0.75 s,显著提高多通道脑电信号联合重构性能。展开更多
文摘针对目前机械振动信号频带越来越宽,依据传统香农-内奎斯特采样定理进行数据采集时,将会得到巨量振动数据,对存储、传输和处理带来困难的问题,提出了基于K-SVD字典学习算法的稀疏表示振动信号压缩测量重构方法。首先分析了振动信号在基于K-奇异值分解(K-Singular value decomposition,K-SVD)字典学习算法得到的过完备字典上的近似稀疏性,即可压缩性;然后利用高斯随机矩阵对振动信号进行压缩测量;最后基于压缩测量值采用正交匹配追踪算法对原始振动信号进行重构。仿真测试结果表明,当振动信号压缩率在60%~90%时,基于K-SVD字典学习算法构造的过完备字典比基于离散余弦过完备字典压缩感知重构相对误差小。该方法既可以得到较高的信号压缩比又有着精确的信号重构性能,在不丢失振动信息的情况下,大大减少了原始振动数据量。
文摘该文基于多通道脑电信号时空特性构建非正交变换过完备字典,准确稀疏表示蕴含时空相关性信息的多通道脑电信号,提高基于时空稀疏贝叶斯学习模型的多通道脑电信号压缩感知联合重构算法性能。实验选用eegmmidb脑电数据库的多通道脑电信号验证所提算法有效性。结果表明,基于过完备字典稀疏表示的多通道脑电信号,能够为多通道脑电信号压缩感知重构算法提供更多的时空相关性信息,比传统多通道脑电信号压缩感知重构算法所得的信噪比值提高近12 d B,重构时间减少0.75 s,显著提高多通道脑电信号联合重构性能。