期刊文献+

基于分块过完备稀疏表示的多聚焦图像融合 被引量:7

Multi-focus Image Fusion Based on Blocked Sparse Representation
下载PDF
导出
摘要 提出一种基于分块过完备稀疏表示的多聚焦图像融合算法。该方法将多聚焦源图像对应分块,采用稀疏模型进行分解,得到每个块的稀疏表示系数。考虑到稀疏系数向量的l1范数越大,带的信息量就越多,采用此因子对稀疏系数加权,求得融合系数,结合过完备字典重构融合图像。实验结果表明该图像融合方法取得较好的融合效果且优于传统小波分解融合方法。同时探讨了字典维数对所提出方法的影响。 A multi-focus image fusion scheme based on blocked sparse representation is presented in the paper. Firstly, the original images are divided into patches and then sparsely represented with learned dictionaries. Secondly, the coefficients are fused using the weighted average rules in which the weighted factors are calculated with l1 norm of the sparse coefficient vector. Finally, the fused image is constructed by the fused coefficients with the learned dictionary. The experiments show that the fusion algorithm is effective and superior to the traditional method based wavelet decomposition. Mean- while we have discussed the effects the over-complete dictionary has taken to the quality of the final fusion image.
出处 《电视技术》 北大核心 2012年第13期48-51,63,共5页 Video Engineering
关键词 稀疏表示 过完备字典 多聚焦图像 融合规则 sparse representation over-complete dictionary multi-focus images fusion rules
  • 相关文献

参考文献18

  • 1LI S T,KWOK J,WANG Y N. Multifocus image fusion using artificial neural networks[J].Pattern Recognition,2002,(08):985-997.doi:10.1016/S0167-8655(02)00029-6. 被引量:1
  • 2XU L,ROUX M,HE M Y. A new method of image fusion based on redundant wavelet transform[A].[S.l.]:IEEE Press,2008.12-17. 被引量:1
  • 3LEWIS J J,CALLAGHAN R J O,NIKOLOV S G. Pixel-and regionbased image fusion using complex wavelets[J].Infrmation Fusion,2007,(02):119-130. 被引量:1
  • 4郭敏,任娜.基于小波变换与块分割的多聚焦图像融合[J].云南大学学报(自然科学版),2008,30(3):251-255. 被引量:8
  • 5LI H,MANJUNATH B S,MITRA A A. Multisensor image fusion using the wavelet transform[J].Graphical Models Image Proeess,1995,(03):235-245. 被引量:1
  • 6杨俊,赵忠明.基于Curvelet变换的多聚焦图像融合方法[J].光电工程,2007,34(6):67-71. 被引量:20
  • 7ZHANG Q,GUO B L. Mutifocus image fusion using the nonsubsampled contourlet transform[J].Signal Processing,2009,(07):1334-1346.doi:10.1016/j.sigpro.2009.01.012. 被引量:1
  • 8CHEN S H,SU H B,ZHANG R H. Improving empirical mode decomposition using support vector machines for multifocus image fusion[J].Sensors,2008,(04):2500-2508. 被引量:1
  • 9MITIANOUDIS N,STATHAKI T. Pixel-based and region-based image fusion schemes using ICA bases[J].Information Fusion,Elsevier Science,2007,(02):131-142. 被引量:1
  • 10ZHANG S,CHEN J,MIAO D D. An image fusion method based on WNMF and region segmentation[A].[S.l.]:IEEE Press,2008.282-285. 被引量:1

二级参考文献28

共引文献38

同被引文献62

  • 1张建勋,牛文斌,张凯文.一种改进的基于小波变换的图像融合算法[J].重庆理工大学学报,2010,v0126.No.1:62-65. 被引量:2
  • 2余远东,胡荣强.气象卫星遥感云图和水汽图的图像处理及强云团识别[D].武汉:武汉理工大学,2007. 被引量:2
  • 3BIN Y,LI S. Multifocus image fusion and restoration with sparse repre- sentation [ J ]. IEEE Trans. Instrumentation and Measurement, 2010,59 (4) :884-892. 被引量:1
  • 4BIN Y,LI S. Pixel-level image fusion with simultaneous orthogonal matc- hing pursuit [ J ]. Information Fusion,2012,13 ( 1 ) : 10-19. 被引量:1
  • 5ELAD M ,AHARON M. hnage denoising via sparse and redundant repre- sentations over learned dictionaries[ J ]. IEEE Trans. hnage Processing, 2006,15 (12) :3736-3745. 被引量:1
  • 6LI S,FANG L,YIN H. An efficient dictionary learning algorithm and its application to 3D medical image denoising[ J ]. IEEE Trans. Biomedical Engineering,2012,59 ( 2 ) :417-427. 被引量:1
  • 7DONG W,ZHANG L,SHI G. Centralized sparse representation for image restoration [ C ]//Proc. ICCV 2011. [ S. I. ] : 1EEE Press, 2011: 1259-1266. 被引量:1
  • 8AHARN M,ELAD M,BRUCKSTEIN A. K-SVD:an algnrithm for desig- ning overcomplete dictionaries for sparse representation [ J ]. IEEE Trans. Signal Processing,2006,54( 11 ) :4311-4322. 被引量:1
  • 9RUBINSTEIN R,ZIBULEVSKY M, ELAD M. Double sparsity:learning sparse dictionaries for sparse signal approximation[ J ]. IEEE Trans. Sig- nal Processing,2010,58(3) :1553-1564. 被引量:1
  • 10LI X,ROUX M,HE M,et al. A new method of image fusion based on re- dundant wavelet transform [ C ]//Proc. VIE 2008. [ S. 1. ] : IEEE Press, 2008 : 12-17. 被引量:1

引证文献7

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部