期刊文献+

基于加权L_1范数的CS-DOA算法 被引量:5

CS-DOA Algorithm Based on Weighted L_1 Norm
下载PDF
导出
摘要 针对基于L1范数约束的压缩感知理论的恢复算法出现虚假目标,恶化DOA估计性能的问题,提出了一种基于加权L1范数的CS-DOA估计算法.该算法利用噪声子空间与信号子空间的正交性,构造了一个加权矩阵,然后对L1范数约束模型进行加权.通过此加权处理,该算法能够使恢复的系数向量具有更好的稀疏性,并能有效地抑制伪峰,从而获得更精确的DOA估计.仿真结果验证了算法的有效性. The recovery algorithm of compressive sensing (CS) based on L1 norm constraint may lead to many false targets and deteriorate the performance of DOA estimation. To solve the above problem, a CS-DOA algorithm based on weighted L1 norm was proposed. Using the orthogonality between noise subspace and signal subspace, a weighted matrix was constructed to penalize the L1 norm constrained model. By the weighted processing, the reconstructed coefficient vector with better sparsity could be achieved by using the presented algorithm. What' s more, the spurious peaks could also be effectively suppressed. Finally, more accurate DOA estimation could be obtained. Simulation results showed the efficiency of the orooosed method.
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2013年第5期654-657,共4页 Journal of Northeastern University(Natural Science)
基金 国家自然科学基金资助项目(60904035) 中央高校基本科研业务费专项资金资助项目(N120423002) 河北省科技厅资助项目(11213502D) 辽宁省自然科学基金资助项目(20102064) 河北省教育厅资助项目(Z2009105) 辽宁省高等学校优秀人才支持计划项目(LJQ2012022)
关键词 波达方向估计 压缩感知 奇异值分解 加权矩阵 L1 范数最小化 DOA estimation compressive sensing SVD (singular value decomposition ) weighted matrix L1 norm minimization
  • 相关文献

参考文献10

  • 1刘福来,汪晋宽,杜瑞燕,于戈.DOA矩阵方法及其性能分析[J].东北大学学报(自然科学版),2006,27(11):1220-1223. 被引量:2
  • 2Schmidt R O. Multiple emitter location and signal parameter estimation [ J ]. IEEE Transactions on Antennas and Propa- gation, 1986,34 ( 3 ) :276 - 280. 被引量:1
  • 3Liu F L, Wang J K, Sun C Y, et al. Spatial differencing method for DOA estimation under the coexistence of both uncorrelated and coherent signals [J ]. IEEE Transactions on Antennas and Propagation,2012,60 (4) :2052 - 2062. 被引量:1
  • 4Donoho D L. Compressed sensing [J].IEEE Transactions on Information Theory,2006,52 (4) : 1289 - 1306. 被引量:1
  • 5Malioutov D M, Cetin M, Willsky A S. A sparse signal reconstruction perspective for source localization with sensor arrays [J].IEEE Transactions on Signal Processing ,2005,53 (8) :3010 -3022. 被引量:1
  • 6Hyder M M,Mahata K. Direction-of-arrival estimation using a mixed L2.0-norm approximation[ J]. 1EEE Transactions on Signal Processing ,2010,58 (9) :4646 - 4655. 被引量:1
  • 7Stoica P,Babu P, Li J. SPICE: a sparse covariance-based estimation method for array processing [ J ]. IEEE Transactions on Signal Processing ,2011,59 ( 2 ) :629 - 638. 被引量:1
  • 8Chen S S, Donoho D L, Saunders M A. Atomic decomposition by basis pursuit [ J ]. SlAM Review, 2001,43 (1) :129 -159. 被引量:1
  • 9Trop J A. Greed is good: algorithmic results for sparse approximation [ J ]. IEEE Transactions on Information Theory,2004,50 (10) :2231 - 2242. 被引量:1
  • 10Candes E J, Wakin M B, Boyd S P. Enhancing sparsity by reweighted L1 minimization[ J]. Journal of Fourier Analysis and Applications,2008,14 ( 5 ) : 877 - 905. 被引量:1

二级参考文献9

  • 1刘福来,白占立,汪晋宽,于戈.一种快速二维到来方向估计算法[J].东北大学学报(自然科学版),2005,26(12):1141-1144. 被引量:3
  • 2Yin Q Y,Zou L H.Estimating two-dimensional directions of arrival of narrow band sources[A].IEEE TENCON'90 Computer and Communication Systems[C].Hong Kong,1990.24-27. 被引量:1
  • 3Liu F L,Wang J K,Du R Y,et al.Joint DOA-delay estimation based on space-time matrix method in wireless channel[A].ISCIT 2005,International Symposium on Communications and Information Technologies 2005[C].Beijing,2005.354-357. 被引量:1
  • 4Zoltowski M D,Haardt M,Mathews C P.Closed-form 2-D angle estimation with rectangular arrays in element space or beamspace via unitary ESPRIT[J].IEEE Transactions on Signal Processing,1996,44(2):316-328. 被引量:1
  • 5Wang H Y,Liu K J R.2-D spatial smoothing for multipath coherent signal separation[J].IEEE Transactions on Aerospace and Electronic Systems,1998,34(2):391-405. 被引量:1
  • 6Bhaskar D R,Hari K V S.Performance analysis of root-MUSIC[J].IEEE Transactions on Acoustics,Speech,and Signal Processing,1989,37(12):1939-1949. 被引量:1
  • 7Bhaskar D R,Hari K V S.Performance analysis of ESPRIT and TAM in determining the direction of arrival of plane waves in noise[J].IEEE Transactions on Acoustics,Speech,and Signal Processing,1989,17(12):1990-1995. 被引量:1
  • 8Stoica P,Nehorai A.MUSIC,maximum likelihood and Cramer-Rao bound[J].IEEE Transactions on Acoustics,Speech and Signal Processing,1989,37(5):720-741. 被引量:1
  • 9金梁,殷勤业.时空DOA矩阵方法[J].电子学报,2000,28(6):8-12. 被引量:76

共引文献1

同被引文献38

  • 1龙海燕,张葡青.无线定位技术的物理基础及其关键技术分析[J].中山大学学报(自然科学版),2005,44(3):42-45. 被引量:8
  • 2淦华东,李志舜,王惠刚.一种自适应最小范数算法[J].应用声学,2005,24(5):317-321. 被引量:2
  • 3庄钊文.极化敏感阵列信号处理[M].北京:国防工业出版社,2006: 204-209. 被引量:4
  • 4林波.基于压缩感知的辐射源DOA估计[D].国防科技大学硕士论文,2011:42. 被引量:1
  • 5郭洋.基于MP算法的线性调频信号参数估计[D].西南交通大学硕士论文,2005:49-50. 被引量:1
  • 6陈磊.信号稀疏分解在信号参数估计中的应用[D].西南交通大学硕士论文,2004:23-40. 被引量:1
  • 7黄蕾,张曙.一种DOA估计新算法及其求根形式[J].系统工程与电子技术,2007,29(12):2026-2028. 被引量:8
  • 8DONOHO D L. Compressed Sensing[J]. IEEE Trans on Information Theory, 2006, 52(4) :1289-1306. 被引量:1
  • 9SCHMIDT R O. Multiple Emitter Locatioh and Signal Parameter Estimation[J]. IEEE Trans on Antennas and Propagation, 1986, 34(3) :276-280. 被引量:1
  • 10LI Huiyong, ZHANG Yuanfang, XIE Julan. A Re- duced-Dimensional Music Algorithm with Modulus Constraint Based on Electromagnetic Vector Sensor Array[C]//Asia-Pacific Signal and Information Pro- cessing Association Annual Summit and Conference, Hong Kong: APSI PA, 2015 : 328-332. 被引量:1

引证文献5

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部