期刊文献+

基于MP算法的语音信号稀疏分解 被引量:13

Speech signal sparse decomposition based on matching pursuit algorithm
下载PDF
导出
摘要 语音信号稀疏分解是一种新的语音信号分解方法,可以将语音信号分解为很简洁的近似表达形式。在语音信号稀疏分解的基础上,可应用于语音处理的多个方面,如语音压缩、语音去噪和语音识别等。研究利用Matching Pursui(tMP)算法实现语音信号的稀疏分解,实验结果表明基于MP算法的语音信号稀疏分解具有较好的重建精度和较高的稀疏度。 Speech signal sparse decomposition is a new method for decomposing audio data into a compact approximate representation.Speech signal sparse decomposition can be used in compression,denoising and recognition of speech signal.This paper researches speech signal sparse decomposition with matching pursuit algorithm.At last,the simulation experiments results show that speech signal sparse decomposition based on matching pursuit algorithm has better reconstructive precision and higher sparsity.
出处 《计算机工程与应用》 CSCD 北大核心 2009年第5期144-146,共3页 Computer Engineering and Applications
关键词 稀疏分解 过完备库 匹配追踪算法 sparse decomposition over-complete dictionary matching pursuit algorithm
  • 相关文献

参考文献8

  • 1Mallat S,Zhang Z.Matching pursuit with time-frequency dictionaries[J].IEEE Trans on Signal Processing, 1993,41 (12) : 3397-3415. 被引量:1
  • 2Chen S,Donoho D,Saunders M.Atomic decomposition by basis pursuit[J].SIAM J Sci Comput,1999,20:33-61. 被引量:1
  • 3Candes E J,Romberg J.Practical signal recovery from random projections[Z].2005-01. 被引量:1
  • 4Coifman R,Wickerhauser M.Wickerhauser,Entropy-based algorithms for best-basis selection[J].IEEE Transactions on Information Theory, 1992,38:713-718. 被引量:1
  • 5张春梅,尹忠科,肖明霞.基于冗余字典的信号超完备表示与稀疏分解[J].科学通报,2006,51(6):628-633. 被引量:71
  • 6Davis G,Mallat S,Avellaneda M.Adaptive greedy approximation[J]. Constr Approx, 1997,13( 1 ) :57-98. 被引量:1
  • 7Candes E,Donoho D.New tight frames of curvelets and optimal representations of objects with C2 singularities[R].Stanford University, 2002. 被引量:1
  • 8Berg A,Mikhael W.A survey of mixed transform techniques for speech and image coding[C]//Proc IEEE Intern Symp Circ Syst, 1999,4:106-109. 被引量:1

二级参考文献53

共引文献70

同被引文献110

引证文献13

二级引证文献50

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部