支持向量机的一对一多分类算法具有良好的性能,但该算法在分类时存在不可分区域,影响了该方法的应用。因此,提出一种一对一与基于紧密度判决相结合的多分类方法,使用一对一算法分类,采用基于紧密度决策解决不可分区,依据样本到类中心之...支持向量机的一对一多分类算法具有良好的性能,但该算法在分类时存在不可分区域,影响了该方法的应用。因此,提出一种一对一与基于紧密度判决相结合的多分类方法,使用一对一算法分类,采用基于紧密度决策解决不可分区,依据样本到类中心之间的距离和基于kNN(k nearest neighbor)的样本分布情况结合的方式构建判别函数来确定类别归属。使用UCI(university of California Irvine)数据集做测试,测试结果表明,该算法能有效地解决不可分区域问题,而且表现出比其它算法更好的性能。展开更多
在分解法进行多类支撑向量机的训练中,所有的两类问题训练都采用一种核函数是不合适的。本文在一对一(OAO, one against one)训练算法中优先选择线性核函数,并将训练结果用有向无回路图 DAG(Directed AcyclicGraph)的方法进行中医舌质...在分解法进行多类支撑向量机的训练中,所有的两类问题训练都采用一种核函数是不合适的。本文在一对一(OAO, one against one)训练算法中优先选择线性核函数,并将训练结果用有向无回路图 DAG(Directed AcyclicGraph)的方法进行中医舌质、舌苔识别。结果表明,该方法可以获得超过 85%的正确识别率,识别速度也比较快。展开更多
文摘支持向量机的一对一多分类算法具有良好的性能,但该算法在分类时存在不可分区域,影响了该方法的应用。因此,提出一种一对一与基于紧密度判决相结合的多分类方法,使用一对一算法分类,采用基于紧密度决策解决不可分区,依据样本到类中心之间的距离和基于kNN(k nearest neighbor)的样本分布情况结合的方式构建判别函数来确定类别归属。使用UCI(university of California Irvine)数据集做测试,测试结果表明,该算法能有效地解决不可分区域问题,而且表现出比其它算法更好的性能。
文摘在分解法进行多类支撑向量机的训练中,所有的两类问题训练都采用一种核函数是不合适的。本文在一对一(OAO, one against one)训练算法中优先选择线性核函数,并将训练结果用有向无回路图 DAG(Directed AcyclicGraph)的方法进行中医舌质、舌苔识别。结果表明,该方法可以获得超过 85%的正确识别率,识别速度也比较快。