期刊文献+

基于改进的一对一支持向量机方法的多目标图像分割 被引量:4

Segmentation of Multi-target Image Based on Improved One-against-one Support Vector Machine Approach
下载PDF
导出
摘要 支持向量机方法被看作是对传统学习分类方法的一个好的替代,特别在小样本、高维情况下,具有较好的泛化性能。文章对一对一支持向量机方法进行了改进,并采用其对多目标图像进行了分割研究。实验结果表明,支持向量机方法是一种很有前景的图像分割技术。 Support vector machine approach is considered a good candidate because of its good generalization performance, especially when the number of training samples is very small and the dimension of feature space is very high. In this paper, an improved one-against-one support vector machine is proposed and the segmentation of multi-target image based on the improved one-against-one support vector machine approach is investigated. Experimental results show that support vector machine approach is a promising technique for image segmentation.
出处 《微电子学与计算机》 CSCD 北大核心 2005年第12期51-54,共4页 Microelectronics & Computer
基金 国家自然科学基金的资助(60475024)
关键词 统计学习理论 支持向量机 一对一方法 多目标图像分割 Statistical learning theory, Support vector machine, One-against-one, Segmentation of multi-target image
  • 相关文献

参考文献15

  • 1C Yan, N Sang, T Zhang. Local Entropy-based Transition Region Extraction and Thresholding. Patter Recognition Letters, 2003, 24: 2935~2941. 被引量:1
  • 2T Zhang, J Peng, Z Li. An Adaptive Image Segmentation Method with Visual Nonlinearity Characteristics. IEEE Transactions on Systems, Man and Cybernetics-part B:Cybernetics, 1996, 26(4): 619~627. 被引量:1
  • 3X Xue, et al. A New Method of SAR Image Segmentation Based on Neural Network. Fifth International Conference on Computational Intelligence and Multimedia Applications, 2003: 149~153. 被引量:1
  • 4T Ziemke. Radar Image Segmentation Using Recurrent Artificial Neural Networks. Pattern Recognition Letters,1996, 17: 319~334. 被引量:1
  • 5G Kuntimad, H S Ranganath. Perfect Image Segmentation Using Pulse Coupled Neural Networks. IEEE Transactions on Neural Networks, 1999, 10(3): 591~598. 被引量:1
  • 6边肇祺等编著..模式识别 第2版[M].北京:清华大学出版社,2000:338.
  • 7V Vapnik. The Nature of Statistics Learning Theory.Springer Verlag, New York, 1995. 被引量:1
  • 8V Vapnik. Statistical Learning Theory. J Wiley, New York,1998. 被引量:1
  • 9G Guo, S Z Li, K L Chan. Support Vector Machines for Face Recognition. Image and Vision Computing, 2001, 19:631~638. 被引量:1
  • 10S Li, J T Kwok, et al. Texture Classification Using the Support Vector Machines. Pattern Recognition, 2003, 36:2883~2893. 被引量:1

同被引文献38

引证文献4

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部