期刊文献+

基于支持向量机方法的多目标图像分割 被引量:3

Segmentation of Multi-target Image Based on Support Vector Machine Approach
下载PDF
导出
摘要 支持向量机方法被看作是对传统学习分类方法的一个好的替代,特别在小训练样本、高维情况下,具有较好的泛化性能。该文采用了支持向量机方法对多目标图像进行了分割研究。实验结果表明:模型参数对支持向量机方法的分割性能有较大的影响;对多目标图像的分割,支持向量机方法是一种很有前景的分割技术。 Support Vector Machine approach is considered a good candidate because of its good generalization performance,especially when the number of training samples is very small and the dimension of feature space is very high.The presented paper investigates the segmentation of multi-target image based on Support Vector Machine approach.Experimental results show that:the influence of model parameters on the segmentation performance of Support Vector Machine approach is significant;Support Vector Machine approach is a promising technique for the segmentation of multi-target image.
出处 《计算机工程与应用》 CSCD 北大核心 2005年第15期11-12,137,共3页 Computer Engineering and Applications
基金 国家自然科学基金资助(编号:60475024)
关键词 多目标图像分割 支持向量机 统计学习理论 segmentation of multi-target image,Support Vector Machine,Statistical Learning Theory
  • 相关文献

参考文献16

  • 1I Middleton, R I Damper.Segmentation of magnetic resonance images using a combination of neural networks and active contour models[J]. Medical Engineering & Physics,2004;26:71-86. 被引量:1
  • 2T Ziemke.Radar image segmentation using recurrent artificial neural networks[J].Patten Recognition Letters,1996;17:319-334. 被引量:1
  • 3G Kuntimad ,H S Ranganath.Perfect image segmentation using pulse coupled neural networks[J].IEEE Transactions on Neural Networks, 1999;10(3):591-598. 被引量:1
  • 4V Vapnik.The nature of statistics learning theory[M].New York: Springer Verlag, 1995. 被引量:1
  • 5V Vapnik.Statistical learning theory[M].New York:J Wiley,1998. 被引量:1
  • 6G Guo,S Z Li,K L Chan.Support vector machines for face recognition[J].Image and Vision Computing,2001:19:631-638. 被引量:1
  • 7C Kotropoulos,I Pitas.Segmentation of ultrasonic images using support vector machines[J].Pattem Recognition Letters, 2003; 24:715-727. 被引量:1
  • 8Q Zhao,J C Principe.Support vector machines for SAR automatic target reeognition[J].IEEE Transactions on Aerospace and Electronic Systems ,2001;37(2):643-654. 被引量:1
  • 9C Burges.A tutorial on support vector machines for pattern recognition[J].Data Mining and Knowledge Discovery,1998;2(2):121-167. 被引量:1
  • 10E Osuna,R Freund, F Girosi.Training support vector machines:an application to face detection[C].In:Proc IEEE Conf on Computer Vision and Pattern Recognition,Puerto Rico,1997:17-19. 被引量:1

同被引文献16

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部