期刊文献+

交互迭代一对一分类算法 被引量:2

Alternating Iterative One-against-One Algorithm
原文传递
导出
摘要 在基于支持向量机的多分类算法中,一对一算法表现出较好的性能.然而此算法却存在不可分区域,落入该区域的样本不能有效被识别,因此影响了一对一算法的性能.为解决这个难题,提出交互迭代一对一分类算法,同时给出算法的有效性分析和计算复杂度证明.为了验证该算法解决不可分区域的能力,我们选用 UCI 数据集来做对比实验.实验结果显示,本文算法不但可以较成功解决不可分区域问题而且表现出比其它算法更好的性能. One-against-one algorithm shows good performance in the multi-class classification algorithm based on SVMs. However, the existing middle unclassifiable region in the algorithm has a bad influence on its performance. To overcome this drawback, a method called aliernating iterative one-against-one algorithm is proposed. And the validity analysis and computational complexity of the proposed algorithm are presented. Finally, one-against-one, fuzzy support vector machine (FSVM), decision directed aeyelie graph (DDAG) and the proposed algorithm are compared on UCI datasets. The experimental results show that the proposed algorithm resolves the unelassifiable region problem effectively and its performance is better than that of the others.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2008年第4期425-431,共7页 Pattern Recognition and Artificial Intelligence
基金 国家自然科学基金(No.10471045 10471045) 广东省自然科学基金(No.04020079 970472 000463 04020079)资助项目
关键词 支持向量机 多分类算法 一对一算法 模糊支持向量机 有向无环图算法 Support Vector Machine, Multi-Class Classification Algorithm, One-against-One Algorithm,Fuzzy Support Vector Machine, Decision Directed Acyclic Graph Algorithm
  • 相关文献

参考文献20

  • 1Vapnik V N. The Nature of Statistical Learning Theory. London, UK: Springer-Verlag, 1995 被引量:1
  • 2Allwein E L, Schapire R E, Singer Y. Reducing Muhiclass to Binary: A Unifying Approach for Margin Classifiers. Journal of Machine Learning Research, 2001, 1(2): 113-l41 被引量:1
  • 3Rifkin R, Klautau A. In Defense of One-vs-All Classification. Journal of Machine Learning Research, 2004, 5(2) : 101 -141 被引量:1
  • 4Bredensteniner E J, Bennett K P. Multicategory Classification by Support Vector Machines. Computational Optimization and Applications, 1999, 12(1/2/3): 53-79 被引量:1
  • 5Vapnik V N. Statistical Learning Theory. New York, USA: John Wiley & Sons, 1998 被引量:1
  • 6Inoue T, Abe S. Fuzzy Support Vector Machines for Pattern Classification// Proc of the International Joint Conference on Neural Networks. Washington, USA, 2001,Ⅱ: 1449 - 1454 被引量:1
  • 7Abe S. Analysis of Muhiclass Support Vector Machines// Proc of the International Conference on Computational Intelligence for Modelling Control and Automation. Vienna, Austria, 2003 : 385 -396 被引量:1
  • 8KreBel U H G. Pairwise Classification and Support Vector Machines // Scholkopf B, Burges C J, Smola A J, eds. Advances in Kernel Methods: Support Vector Learning. Cambridge, USA : MIT Press, 1999 : 255 - 268 被引量:1
  • 9Platt J C, Cristianini N, Shawe-Jaylor J. Large Margin DAGs for Muhiclass Classification//Solla S A, Leen T K, Muller K R, eds: Advances in Neural Information Processing Systems. Cambridge,USA : MIT Press, 2000, 12 : 547 - 553 被引量:1
  • 10Pontil M, Verri A. Support Vector Machine for 3D Object Recognition. IEEE Trans on Pattern Analysis and Machine Intelligence, 1998, 20(6) : 637 -646 被引量:1

同被引文献16

引证文献2

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部