The output feedback model predictive control(MPC),for a linear parameter varying(LPV) process system including unmeasurable model parameters and disturbance(all lying in known polytopes),is considered.Some previously ...The output feedback model predictive control(MPC),for a linear parameter varying(LPV) process system including unmeasurable model parameters and disturbance(all lying in known polytopes),is considered.Some previously developed tools,including the norm-bounding technique for relaxing the disturbance-related constraint handling,the dynamic output feedback law,the notion of quadratic boundedness for specifying the closed-loop stability,and the ellipsoidal state estimation error bound for guaranteeing the recursive feasibility,are merged in the control design.Some previous approaches are shown to be the special cases.An example of continuous stirred tank reactor(CSTR) is given to show the effectiveness of the proposed approaches.展开更多
An advanced earthquake location technique presented by Prugger and Gendzwill (1988) was introduced in this paper. Its characteristics are: 1) adopting the difference between the mean value by observed arrival times an...An advanced earthquake location technique presented by Prugger and Gendzwill (1988) was introduced in this paper. Its characteristics are: 1) adopting the difference between the mean value by observed arrival times and the mean value by calculated travel times as the original reference time of event to calculate the traveltime residuals, thus resulting in the 'true' minimum of travel-time residuals; 2) choosing the L1 norm statistic of the residuals that is more suitable to earthquake location; 3) using a simplex optimized algorithm to search for the minimum residual value directly and iteratively, thus it does not require derivative calculations and avoids matrix inversions, it can be used for any velocity structures and different network systems and can solve out hypocentral parameters (λ, ,h) rapidly and exactly; 4) original time is further derived alone, so the trade-off between focal depth and original time is avoided. All these prominent features make us obtain more accurate Tibetan earthquake locations in the rare network condition by using this method. In this paper, we examined these schemes for our mobile and permanent networks in Tibet with artificial data sets,then using these methods, we determined the hypocentral parameters of partial events observed in the field work period of this project from July 1991 to September 1991 and the seven problematic earthquakes during 1989 - 1990. The hypocentral location errors may be estimated to be less than 3. 6 km approximately. The events with focal depth more than 40 km seem to be distributed in parallel to Qinghai-Sichuan-Yunnan arc structural zone.展开更多
基金Supported by the National High Technology Research and Development Program of China(2014AA041802)the National Natural Science Foundation of China(61573269)
文摘The output feedback model predictive control(MPC),for a linear parameter varying(LPV) process system including unmeasurable model parameters and disturbance(all lying in known polytopes),is considered.Some previously developed tools,including the norm-bounding technique for relaxing the disturbance-related constraint handling,the dynamic output feedback law,the notion of quadratic boundedness for specifying the closed-loop stability,and the ellipsoidal state estimation error bound for guaranteeing the recursive feasibility,are merged in the control design.Some previous approaches are shown to be the special cases.An example of continuous stirred tank reactor(CSTR) is given to show the effectiveness of the proposed approaches.
文摘An advanced earthquake location technique presented by Prugger and Gendzwill (1988) was introduced in this paper. Its characteristics are: 1) adopting the difference between the mean value by observed arrival times and the mean value by calculated travel times as the original reference time of event to calculate the traveltime residuals, thus resulting in the 'true' minimum of travel-time residuals; 2) choosing the L1 norm statistic of the residuals that is more suitable to earthquake location; 3) using a simplex optimized algorithm to search for the minimum residual value directly and iteratively, thus it does not require derivative calculations and avoids matrix inversions, it can be used for any velocity structures and different network systems and can solve out hypocentral parameters (λ, ,h) rapidly and exactly; 4) original time is further derived alone, so the trade-off between focal depth and original time is avoided. All these prominent features make us obtain more accurate Tibetan earthquake locations in the rare network condition by using this method. In this paper, we examined these schemes for our mobile and permanent networks in Tibet with artificial data sets,then using these methods, we determined the hypocentral parameters of partial events observed in the field work period of this project from July 1991 to September 1991 and the seven problematic earthquakes during 1989 - 1990. The hypocentral location errors may be estimated to be less than 3. 6 km approximately. The events with focal depth more than 40 km seem to be distributed in parallel to Qinghai-Sichuan-Yunnan arc structural zone.