期刊文献+
共找到91篇文章
< 1 2 5 >
每页显示 20 50 100
一类反应扩散方程组的隐-显多步有限元方法及其分析 被引量:6
1
作者 陈蔚 《数学物理学报(A辑)》 CSCD 北大核心 2002年第2期180-188,共9页
考虑一类非线性反应扩散方程组 ,提出了隐 -显多步有限元格式逼近 ,证明了格式最优的
关键词 反应扩散方程组 强A(0)-稳定 多步法 有限元法
下载PDF
非线性对流扩散方程沿特征线的多步有限体积元格式 被引量:4
2
作者 杨旻 袁益让 《计算数学》 CSCD 北大核心 2004年第4期484-496,共13页
对于二维非线性对流扩散方程构造了沿特征线方向的多步有限体积元格式,关于空间采用二次有限体积元方法离散,关于时间采用多步法进行离散,获得了O(△t^2+h^2)形式的误差估计。本文最后给出的数值算例表明了方法的有效性。
关键词 非线性对流扩散方程 数值算例 有限体积 特征线 离散 误差估计 二维 格式 多步法 方向
原文传递
D-CONVERGENCE AND STABILITY OF A CLASS OF LINEAR MULTISTEP METHODS FOR NONLINEAR DDES 被引量:2
3
作者 Cheng-jian Zhang Xiao-xin Liao (Department of Mathematics, Huazhong University of Science and Technology, Wuhan 430074, China) 《Journal of Computational Mathematics》 SCIE CSCD 2000年第2期199-206,共8页
Presents information on a study which dealt with the error behavior and the stability analysis of a class of linear multistep methods with the Lagrangian interpolation as applied to the nonlinear delay differential eq... Presents information on a study which dealt with the error behavior and the stability analysis of a class of linear multistep methods with the Lagrangian interpolation as applied to the nonlinear delay differential equations. Methods and the basic lemmas; Analysis of convergence and stability. 展开更多
关键词 D-convergence STABILITY multistep methods nonlinear DDEs
原文传递
STABILITY AND CONVERGENCE OF STEPSIZE-DEPENDENT LINEAR MULTISTEP METHODS FOR NONLINEAR DISSIPATIVE EVOLUTION EQUATIONS IN BANACH SPACE
4
作者 Wansheng Wang 《Journal of Computational Mathematics》 SCIE CSCD 2024年第2期337-354,共18页
Stability and global error bounds are studied for a class of stepsize-dependent linear multistep methods for nonlinear evolution equations governed by ω-dissipative vector fields in Banach space.To break through the ... Stability and global error bounds are studied for a class of stepsize-dependent linear multistep methods for nonlinear evolution equations governed by ω-dissipative vector fields in Banach space.To break through the order barrier p≤1 of unconditionally contractive linear multistep methods for dissipative systems,strongly dissipative systems are introduced.By employing the error growth function of the methods,new contractivity and convergence results of stepsize-dependent linear multistep methods on infinite integration intervals are provided for strictly dissipative systems(ω<0)and strongly dissipative systems.Some applications of the main results to several linear multistep methods,including the trapezoidal rule,are supplied.The theoretical results are also illustrated by a set of numerical experiments. 展开更多
关键词 Nonlinear evolution equation Linear multistep methods ω-dissipative operators Stability CONVERGENCE Banach space
原文传递
IMPLICIT-EXPLICIT MULTISTEP FINITE ELEMENT-MIXED FINITE ELEMENT METHODS FOR THE TRANSIENT BEHAVIOR OF A SEMICONDUCTOR DEVICE
5
作者 陈蔚 《Acta Mathematica Scientia》 SCIE CSCD 2003年第3期386-398,共13页
The transient behavior of a semiconductor device consists of a Poisson equation for the electric potential and of two nonlinear parabolic equations for the electron density and hole density. The electric potential equ... The transient behavior of a semiconductor device consists of a Poisson equation for the electric potential and of two nonlinear parabolic equations for the electron density and hole density. The electric potential equation is discretized by a mixed finite element method. The electron and hole density equations are treated by implicit-explicit multistep finite element methods. The schemes are very efficient. The optimal order error estimates both in time and space are derived. 展开更多
关键词 Semiconductor device strongly A(0)-stable multistep methods finite element methods mixed finite element methods
下载PDF
SYMPLECTIC MULTISTEP METHODS FOR LINEAR HAMILTONIAN SYSTEMS 被引量:3
6
作者 Li Wang-yao(Computing Center, Academia Sinica, Beijing China) 《Journal of Computational Mathematics》 SCIE CSCD 1994年第3期235-236,234-238,共4页
Three classes of symplectic multistep methods for linear Hamiltonian systems are constructed and their stabilities are discussed in this paper.
关键词 SYMPLECTIC multistep methods FOR LINEAR HAMILTONIAN SYSTEMS
原文传递
Study of Stability Analysis for a Class of Fourth Order Boundary Value Problems 被引量:1
7
作者 C. Bala Rama Krishna P. S. Rama Chandra Rao 《Applied Mathematics》 2014年第13期1887-1893,共7页
Fourth order differential equations are considered to develop the class of methods for the numerical solution of boundary value problems. In this paper, we have discussed the regions of absolute stability of fourth or... Fourth order differential equations are considered to develop the class of methods for the numerical solution of boundary value problems. In this paper, we have discussed the regions of absolute stability of fourth order boundary value problems. Methods proposed and derived in this paper are applied to solve a fourth-order boundary value problem. Numerical results are given to illustrate the efficiency of our methods and compared with exact solution. 展开更多
关键词 Numerical Differentiation Initial VALUE PROBLEM Boundary VALUE PROBLEM ABSOLUTE Stability multistep methods
下载PDF
求解非线性中立型延迟微分方程一类线性多步方法的收敛性
8
作者 王晚生 李寿佛 苏凯 《计算数学》 CSCD 北大核心 2008年第2期157-166,共10页
本文致力于带有Lagrang插值的一类线性多步法求解非线性中立型延迟微分方程的误差分析.证明了一个p′阶的线性多步方法配上一个q阶的Lagrang插值导致一个minf[p′,q+1]阶的E-(或EB-)收敛的非线性中立型延迟微分方程数值方法.
关键词 多步方法 中立型延迟微分方程 收敛性
原文传递
半导体设备热传输中的隐式-显式多步有限元法(英文) 被引量:2
9
作者 陈蔚 《数学研究》 CSCD 2002年第2期109-123,共15页
考虑热引导半导体设备中的传输行为 .用一个有限元法离散电子位势所满足的 Poisson方程 ;用隐式 -显式多步有限元法处理电子密度和空洞密度满足的两个对流 -扩散方程 ;热传导方程用隐式多步有限元法离散 .推导了优化的 L2 范误差估计 .
关键词 半导体设备 热传输 强A(0)稳定 多步法 有限元法
下载PDF
A Five-Step P-Stable Method for the Numerical Integration of Third Order Ordinary Differential Equations
10
作者 D. O. Awoyemi S. J. Kayode L. O. Adoghe 《American Journal of Computational Mathematics》 2014年第3期119-126,共8页
In this paper we derived a continuous linear multistep method (LMM) with step number k = 5 through collocation and interpolation techniques using power series as basis function for approximate solution. An order nine ... In this paper we derived a continuous linear multistep method (LMM) with step number k = 5 through collocation and interpolation techniques using power series as basis function for approximate solution. An order nine p-stable scheme is developed which was used to solve the third order initial value problems in ordinary differential equation without first reducing to a system of first order equations. Taylor’s series algorithm of the same order was developed to implement our method. The result obtained compared favourably with existing methods. 展开更多
关键词 Continuous COLLOCATION multistep methods Interpolation THIRD Order Power Series APPROXIMATE Solution
下载PDF
MULTISTEP DISCRETIZATION OF INDEX 3 DAES
11
作者 Yang Cao Qing-yang Li (Department of Mathematics, Tsinghua University, Beijing 100084, China) 《Journal of Computational Mathematics》 SCIE EI CSCD 2000年第3期325-336,共12页
Studies the different types of multistep discretization of index 3 differential-algebraic equations in Hessenberg form. Existense, uniqueness and influence of perturbations; Local convergence of multistep discretizati... Studies the different types of multistep discretization of index 3 differential-algebraic equations in Hessenberg form. Existense, uniqueness and influence of perturbations; Local convergence of multistep discretization; Details on the numerical tests. 展开更多
关键词 multistep methods Adams method BDF DAES Index 3
原文传递
Numerical Integration of Forced and Damped Oscillators through a New Multistep Method
12
作者 M. Cortés-Molina F. García-Alonso J. A. Reyes 《Journal of Applied Mathematics and Physics》 2019年第10期2440-2458,共19页
Forced and damped oscillators appear in the mathematical modelling of many problems in pure and applied sciences such as physics, engineering and celestial mechanics among others. Although the accuracy of the T-functi... Forced and damped oscillators appear in the mathematical modelling of many problems in pure and applied sciences such as physics, engineering and celestial mechanics among others. Although the accuracy of the T-functions series method is high, the calculus of their coefficients needs specific recurrences in each case. To avoid this inconvenience, the T-functions series method is transformed into a multistep method whose coefficients are calculated using recurrence procedures. These methods are convergent and have the same properties to the T-functions series method. Numerical examples already used by other authors are presented, such as a stiff problem, a Duffing oscillator and an equatorial satellite problem when the perturbation comes from zonal harmonics J2. 展开更多
关键词 Numerical Solutions of ODE’s PERTURBED and DAMPED Oscillators Initial Value Problems (IVP) multistep methods
下载PDF
半正定两相驱动问题的多步有限体积方法及其理论分析 被引量:1
13
作者 杨旻 袁益让 《系统科学与数学》 CSCD 北大核心 2006年第5期541-552,共12页
考虑多维半正定两相驱动方程的初边值问题,在非结构网格上构造多步的迎风有限体积格式,利用微分方程先验估计理论证明了格式的离散模形式的误差估计为D(△t^2+h),其中△t和h分别表示时空步长.数值算例进一步验证了格式的有效性.
关键词 半正定问题 非结构网格 多步法 迎风有限体积格式 误差估计
原文传递
Numerical Analysis of Linear and Nonlinear Time-Fractional Subdiffusion Equations 被引量:1
14
作者 Yu bo Yang Fanhai Zeng 《Communications on Applied Mathematics and Computation》 2019年第4期621-637,共17页
In this paper,a new type of the discrete fractional Gronwall inequality is developed,which is applied to analyze the stability and convergence of a Galerkin spectral method for a linear time-fractional subdifiFusion e... In this paper,a new type of the discrete fractional Gronwall inequality is developed,which is applied to analyze the stability and convergence of a Galerkin spectral method for a linear time-fractional subdifiFusion equation.Based on the temporal-spatial error splitting argument technique,the discrete fractional Gronwall inequality is also applied to prove the unconditional convergence of a semi-implicit Galerkin spectral method for a nonlinear time-fractional subdififusion equation. 展开更多
关键词 Time-fractional subdififusion equation Convolution QUADRATURE FRACTIONAL linear multistep methods Discrete FRACTIONAL GRONWALL inequality Unconditional stability
下载PDF
一类多步方法求解Banach空间中试验问题的非线性稳定性 被引量:1
15
作者 王晚生 李寿佛 苏凯 《计算数学》 CSCD 北大核心 2006年第2期201-210,共10页
本文讨论了一类多步方法求解Banach空间中试验问题类K(μ,λ*,ε)的非线性稳定性, 这一试验问题类的基础是李寿佛[1]引进的试验问题类K(μ,λ*)。我们将证明在Hibert空间中类K(μ,λ*,ε)等价于类K(μ,λ*)。我们给出了试验问题类K(μ,... 本文讨论了一类多步方法求解Banach空间中试验问题类K(μ,λ*,ε)的非线性稳定性, 这一试验问题类的基础是李寿佛[1]引进的试验问题类K(μ,λ*)。我们将证明在Hibert空间中类K(μ,λ*,ε)等价于类K(μ,λ*)。我们给出了试验问题类K(μ,λ*,ε)中微分方程的任何二解之差所满足的不等式,这一结果可看作是李寿佛[1]对试验问题类K(μ,λ*)所获结果的推广。并得到了一类线性多步方法关于K(μ,λ*,ε)(μ为任意实数)类问题的一些稳定性结果. 展开更多
关键词 多步方法 BANACH空间 非线性稳定性 稳定性结果
原文传递
多步方法稳定程度的计算 被引量:1
16
作者 蒋红艳 李寿佛 《湘潭大学自然科学学报》 CAS CSCD 1997年第4期8-13,共6页
该文研制了计算一般多步方法稳定程度的通用软件,并将该软件成功地用于评估向后微分公式及其改型的数值稳定性由于一般多步方法是个十分浩瀚的方法类,该软件提供了研究多步方法的稳定域和稳定程度的有力工具.
关键词 多步方法 稳定程度 数值解 常微分方程
下载PDF
High Order Semi-implicit Multistep Methods for Time-Dependent Partial Differential Equations
17
作者 Giacomo Albi Lorenzo Pareschi 《Communications on Applied Mathematics and Computation》 2021年第4期701-718,共18页
We consider the construction of semi-implicit linear multistep methods that can be applied to time-dependent PDEs where the separation of scales in additive form,typically used in implicit-explicit(IMEX)methods,is not... We consider the construction of semi-implicit linear multistep methods that can be applied to time-dependent PDEs where the separation of scales in additive form,typically used in implicit-explicit(IMEX)methods,is not possible.As shown in Boscarino et al.(J.Sci.Comput.68:975-1001,2016)for Runge-Kutta methods,these semi-implicit techniques give a great flexibility,and allow,in many cases,the construction of simple linearly implicit schemes with no need of iterative solvers.In this work,we develop a general setting for the construction of high order semi-implicit linear multistep methods and analyze their stability properties for a prototype lineal'advection-diffusion equation and in the setting of strong stability preserving(SSP)methods.Our findings are demonstrated on several examples,including nonlinear reaction-diffusion and convection-diffusion problems. 展开更多
关键词 Semi-implicit methods Implicit-explicit methods multistep methods Strong stability preserving High order accuracy
下载PDF
一类含2个离步点的并行多步混合方法
18
作者 李光辉 李洪 《浙江林学院学报》 CSCD 2000年第3期334-337,共4页
构造了一类能用 3个处理器并行实现的含 2个离步点的多步混合方法 ,重点讨论了这类方法的稳定性、相容性及收敛性。参
关键词 刚性微分方程 并行算法 多步法 混合法
下载PDF
Stability analysis of linear multistep methods for neutral delay differential equations
19
作者 S K JAFFER 刘明珠 丁效华 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2003年第2期168-170,共3页
The stability analysis of linear multistep (LM) methods is carried out under Kreiss resolvent condition when they are applied to neutral delay differential equations of the form y′(t)=ay(t)+by(t-τ)+ cy′(t- τ) y(t)... The stability analysis of linear multistep (LM) methods is carried out under Kreiss resolvent condition when they are applied to neutral delay differential equations of the form y′(t)=ay(t)+by(t-τ)+ cy′(t- τ) y(t)=g(t) -τ≤t≤0 with τ>0 and a, b and c∈, and it is proved that the ‖B n‖ is suitably bounded, where B is the companion matrix. 展开更多
关键词 linear multistep methods neutral differential equations Kreiss resolvent condition
下载PDF
Dissipativity of Multistep Runge-Kutta Methods for Nonlinear Neutral Delay-Integro-Differential Equations with Constrained Grid
20
作者 Sidi Yang 《Journal of Contemporary Educational Research》 2021年第1期99-107,共9页
This paper is concerned with the numerical dissipativity of multistep Runge-Kutta methods for nonlinear neutral delay-integro-differential equations.We investigate the dissipativity properties of-algebraically stable ... This paper is concerned with the numerical dissipativity of multistep Runge-Kutta methods for nonlinear neutral delay-integro-differential equations.We investigate the dissipativity properties of-algebraically stable multistep Runge-Kutta methods with constrained grid.The finite-dimensional and infinite-dimensional dissipativity results of-algebraically stable multistep Runge-Kutta methods are obtained. 展开更多
关键词 DISSIPATIVITY -algebraically stability Nonlinear neutral delay-integro-differential equation multistep Runge-Kutta methods
下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部