期刊文献+

STABILITY AND CONVERGENCE OF STEPSIZE-DEPENDENT LINEAR MULTISTEP METHODS FOR NONLINEAR DISSIPATIVE EVOLUTION EQUATIONS IN BANACH SPACE

原文传递
导出
摘要 Stability and global error bounds are studied for a class of stepsize-dependent linear multistep methods for nonlinear evolution equations governed by ω-dissipative vector fields in Banach space.To break through the order barrier p≤1 of unconditionally contractive linear multistep methods for dissipative systems,strongly dissipative systems are introduced.By employing the error growth function of the methods,new contractivity and convergence results of stepsize-dependent linear multistep methods on infinite integration intervals are provided for strictly dissipative systems(ω<0)and strongly dissipative systems.Some applications of the main results to several linear multistep methods,including the trapezoidal rule,are supplied.The theoretical results are also illustrated by a set of numerical experiments.
作者 Wansheng Wang
出处 《Journal of Computational Mathematics》 SCIE CSCD 2024年第2期337-354,共18页 计算数学(英文)
基金 supported by the Natural Science Foundation of China(Grant Nos.12271367,11771060) by the Science and Technology Innovation Plan of Shanghai,China(Grant No.20JC1414200) sponsored by the Natural Science Foundation of Shanghai,China(Grant No.20ZR1441200).
  • 相关文献

参考文献1

二级参考文献3

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部