Optical coherence tomography angiography(OCTA)takes the flowing red blood cells(RBCs)as intrinsic contrast agents,enabling fast and three-dimensional visualization of vasculature per-fusion down to capillary level,wit...Optical coherence tomography angiography(OCTA)takes the flowing red blood cells(RBCs)as intrinsic contrast agents,enabling fast and three-dimensional visualization of vasculature per-fusion down to capillary level,without a requirement of exogenous fluorescent injection.Various motion-contrast OCTA algorithms have been proposed to effectively extract dynamic blood flow from static tissues utilizing the different components of OCT signals(including amplitude,phase and complex)with various operations(such as differential,variance and decorrelation).Those algorithms promote the application of OCTA in both clinical diagnosis and scientific research.The purpose of this paper is to provide a systematical review of OCTA based on the inverse SNR and decorrelation features(ID-OCTA),mainly including the OCTA contrast origins,ID-OCTA imaging,quantification and applications.展开更多
We disclosed the interiorly driven macroscopic Brownian motion behavior of self-powered liquid metal motors. Such tiny motors in millimeter scale move randomly at a velocity magnitude of centimeters per second in aque...We disclosed the interiorly driven macroscopic Brownian motion behavior of self-powered liquid metal motors. Such tiny motors in millimeter scale move randomly at a velocity magnitude of centimeters per second in aqueous alkaline solution, well resembling the classical Brownian motion. However, unlike the existing phenomena, where the particle motions were caused by collisions from the surrounding molecules, the current random liquid metal motions are internally enabled and self-powered, along with the colliding among neighboring motors, the substrate and the surrounding electrolyte molecules. Through uniformly dissolving only 1% (mass percentage) A1 into GaInl0, many tiny motors can be quickly fabricated and activated to take the Brownian-like random motions. Further, we introduced an experimental approach of using optical image contrast, which works just like the Wilson cloud chamber, to distinctively indicate the motor trajectory resulted from the generated hydrogen gas stream. A series of unusual complicated multi-phase fluid mechanics phenomena were observed. It was also identified that the main driving factor of the motors comes from the H2 bubbles generated at the bottom of these tiny motors, which is different from the large size self-fueled liquid metal machine. Several typical mechanisms for such unconventional Brownian-like motion phenomena were preliminarily interpreted.展开更多
基金The authors are thankful to National Natural Science Foundation of China(62075189)Zhejiang Provincial Natural Science Foundation of China(LR19F050002)+1 种基金Zhejiang Lab(2018EBOZX01)Fundamental Research Funds for the Central Universities(2018FZA5003).
文摘Optical coherence tomography angiography(OCTA)takes the flowing red blood cells(RBCs)as intrinsic contrast agents,enabling fast and three-dimensional visualization of vasculature per-fusion down to capillary level,without a requirement of exogenous fluorescent injection.Various motion-contrast OCTA algorithms have been proposed to effectively extract dynamic blood flow from static tissues utilizing the different components of OCT signals(including amplitude,phase and complex)with various operations(such as differential,variance and decorrelation).Those algorithms promote the application of OCTA in both clinical diagnosis and scientific research.The purpose of this paper is to provide a systematical review of OCTA based on the inverse SNR and decorrelation features(ID-OCTA),mainly including the OCTA contrast origins,ID-OCTA imaging,quantification and applications.
基金supported by Research Funding of Chinese Academy of Sciences and partially by the National Natural Science Foundation of China(51376102)
文摘We disclosed the interiorly driven macroscopic Brownian motion behavior of self-powered liquid metal motors. Such tiny motors in millimeter scale move randomly at a velocity magnitude of centimeters per second in aqueous alkaline solution, well resembling the classical Brownian motion. However, unlike the existing phenomena, where the particle motions were caused by collisions from the surrounding molecules, the current random liquid metal motions are internally enabled and self-powered, along with the colliding among neighboring motors, the substrate and the surrounding electrolyte molecules. Through uniformly dissolving only 1% (mass percentage) A1 into GaInl0, many tiny motors can be quickly fabricated and activated to take the Brownian-like random motions. Further, we introduced an experimental approach of using optical image contrast, which works just like the Wilson cloud chamber, to distinctively indicate the motor trajectory resulted from the generated hydrogen gas stream. A series of unusual complicated multi-phase fluid mechanics phenomena were observed. It was also identified that the main driving factor of the motors comes from the H2 bubbles generated at the bottom of these tiny motors, which is different from the large size self-fueled liquid metal machine. Several typical mechanisms for such unconventional Brownian-like motion phenomena were preliminarily interpreted.