In the newly developed oxygen-enriched bottom-blowing copper smelting process(also known as the SKS copper smelting process), Cu loss in slag is one of the most concerning issues. This paper presents our research resu...In the newly developed oxygen-enriched bottom-blowing copper smelting process(also known as the SKS copper smelting process), Cu loss in slag is one of the most concerning issues. This paper presents our research results concerning the relationship between the Cu content of the matte and slag in the SKS process; the results are based on actual industrial production in the Dongying Fangyuan copper smelter. The results show that the matte grade strongly influences Cu losses in slag. The dissolved and entrained losses account for 10%–20% and 80%–90% of the total SKS industrial Cu losses in slag, respectively. With increasing matte grade, the dissolved and entrained Cu losses in the SKS slag both increase continuously. When the matte grade is greater than 68%, the content of Cu in the smelting slag increases much more dramatically. To obtain a high direct recovery of copper, the matte grade should be less than 75% in industrial SKS copper production.展开更多
The change of iron composition as well as the removal of copper from iron was investigated in the reduction process, and a new way to deal with copper slag was proposed. The iron in copper slag exists mainly in the fo...The change of iron composition as well as the removal of copper from iron was investigated in the reduction process, and a new way to deal with copper slag was proposed. The iron in copper slag exists mainly in the form of fayalite, and the copper sulfide content accounts for just about 50%. Therefore, the magnetic separation as well as grinding floatation method is not suitable, and a pyrogenic treatment on copper slag is necessary. The carhurization and desulfurization process is restricted to a degree within the carbon composite pellets, and copper matte phase pre- cipitates from copper slag in the reduction process, which is immiscible with molten iron and slag. The copper con- tent decreases to 0.4% as the carbon content in molten iron reaches 3.84%, and the removal ratio of copper from molten iron approaches to 80%. The reduction and sulfurization process can be eompleted in one step, and the copper is separated from iron based on the ternary system of iron-matte-slag.展开更多
基金financially supported by the National Natural Science Foundation of China (No. 51620105013)Dongying Fangyuan Nonferrous Metals Co., Ltd.
文摘In the newly developed oxygen-enriched bottom-blowing copper smelting process(also known as the SKS copper smelting process), Cu loss in slag is one of the most concerning issues. This paper presents our research results concerning the relationship between the Cu content of the matte and slag in the SKS process; the results are based on actual industrial production in the Dongying Fangyuan copper smelter. The results show that the matte grade strongly influences Cu losses in slag. The dissolved and entrained losses account for 10%–20% and 80%–90% of the total SKS industrial Cu losses in slag, respectively. With increasing matte grade, the dissolved and entrained Cu losses in the SKS slag both increase continuously. When the matte grade is greater than 68%, the content of Cu in the smelting slag increases much more dramatically. To obtain a high direct recovery of copper, the matte grade should be less than 75% in industrial SKS copper production.
基金Item Sponsored by National Natural Science Foundation of China(51404075)
文摘The change of iron composition as well as the removal of copper from iron was investigated in the reduction process, and a new way to deal with copper slag was proposed. The iron in copper slag exists mainly in the form of fayalite, and the copper sulfide content accounts for just about 50%. Therefore, the magnetic separation as well as grinding floatation method is not suitable, and a pyrogenic treatment on copper slag is necessary. The carhurization and desulfurization process is restricted to a degree within the carbon composite pellets, and copper matte phase pre- cipitates from copper slag in the reduction process, which is immiscible with molten iron and slag. The copper con- tent decreases to 0.4% as the carbon content in molten iron reaches 3.84%, and the removal ratio of copper from molten iron approaches to 80%. The reduction and sulfurization process can be eompleted in one step, and the copper is separated from iron based on the ternary system of iron-matte-slag.