期刊文献+
共找到530篇文章
< 1 2 27 >
每页显示 20 50 100
应用光谱技术和支持向量机分析方法快速检测啤酒糖度和pH值 被引量:26
1
作者 王莉 何勇 +1 位作者 刘飞 应霞芳 《红外与毫米波学报》 SCIE EI CAS CSCD 北大核心 2008年第1期51-55,共5页
为实现啤酒糖度和pH值的快速检测,采用可见/近红外光谱仪器得到360个啤酒样本的可见/近红外光谱数据.使用主成分分析(PCA)对数据进行降维处理以消除众多信息共存中相互重叠的部分,得到6个主成分值.将样本数据随机分为定标集和预测集,利... 为实现啤酒糖度和pH值的快速检测,采用可见/近红外光谱仪器得到360个啤酒样本的可见/近红外光谱数据.使用主成分分析(PCA)对数据进行降维处理以消除众多信息共存中相互重叠的部分,得到6个主成分值.将样本数据随机分为定标集和预测集,利用最小二乘支持向量机(LS-SVM)算法在定标集数据基础上建立啤酒糖度和pH值预测模型,并利用此模型对预测集样本进行预测.根据预测相关系数(r)和预测标准偏差(RMSEP)判断预测模型好坏,结果表明该模型对啤酒糖度预测的相关系数r为0.9829,RMSEP为0.1506;对啤酒pH值的预测相关系数r为0.9563,RMSEP为0.0494,预测精度明显高于神经网络和PLS预测,所以利用该模型能够准确的预测啤酒的糖度及pH值. 展开更多
关键词 啤酒 可见/近红外光谱 最小二乘支持向量机 糖度 PH
下载PDF
基于近红外光谱与随机青蛙算法的褐变板栗识别 被引量:14
2
作者 郑剑 周竹 +1 位作者 仲山民 曾松伟 《浙江农林大学学报》 CAS CSCD 北大核心 2016年第2期322-329,共8页
为了实现板栗Castanea mollissima的快速自动分选,研究了基于近红外光谱技术的褐变板栗无损检测方法。首先采用Antaris Ⅱ傅里叶变换近红外光谱仪获取70个正常板栗和110个褐变板栗的近红外光谱(1000.00-2500.00nm),比较了不同光... 为了实现板栗Castanea mollissima的快速自动分选,研究了基于近红外光谱技术的褐变板栗无损检测方法。首先采用Antaris Ⅱ傅里叶变换近红外光谱仪获取70个正常板栗和110个褐变板栗的近红外光谱(1000.00-2500.00nm),比较了不同光谱预处理方法对褐变板栗识别的影响,随后采用一种新的变量选择方法即随机青蛙算法(Ran-doraFrog)提取与板栗褐变相关的特征波长变量,最后基于特征波长建立和比较了褐变板栗识别的偏最小二乘-线性判别分析模型(PLS-LDA)和最小二乘一支持向量机(LS-SVM)模型。结果显示:经标准正态变量变换(SNV)预处理和随机青蛙算法优选的23个特征波长所建LS-SVM模型的性能最优,该模型对测试集的敏感性、特异性和识别正确率分别为0.92,1.00和95.00%。随机青蛙算法可以有效筛选重要的特征变量,不仅能简化模型,而且可以提高识别准确率和识别速度。 展开更多
关键词 经济林学 近红外光谱 褐变 随机青蛙算法 最小二乘-支持向量机 偏最小二乘-线性判别分析 板果
下载PDF
基于LS-SVM和高光谱技术的玉米叶片叶绿素含量检测 被引量:14
3
作者 彭彦昆 黄慧 +2 位作者 王伟 吴建虎 王秀 《江苏大学学报(自然科学版)》 EI CAS 北大核心 2011年第2期125-128,174,共5页
为实现玉米叶片叶绿素含量的快速无损测定,采集不同氮素水平的玉米叶片,制备校正集样本60个,验证集样本16个,获取400~1 100 nm波段范围的高光谱数据和相应叶绿素含量.采用变量标准化、13点平滑、一阶导数3种预处理方法结合,根据相关系... 为实现玉米叶片叶绿素含量的快速无损测定,采集不同氮素水平的玉米叶片,制备校正集样本60个,验证集样本16个,获取400~1 100 nm波段范围的高光谱数据和相应叶绿素含量.采用变量标准化、13点平滑、一阶导数3种预处理方法结合,根据相关系数图谱选择470~760 nm波段作为光谱数据分析对象;利用最小二乘支持向量机建立玉米叶片叶绿素含量与高光谱数据的定量分析模型,基于交叉验证的网格搜索寻找LS-SVM的最优参数,建立LS-SVM模型;所建立的校正模型相关系数为0.96,验证相关系数为0.93.研究结果为高光谱技术在精准减量施肥遥感检测中的应用提供了技术基础. 展开更多
关键词 玉米叶片 叶绿素含量 高光谱成像 最小二乘支持向量机 检测
下载PDF
基于最小二乘支持向量机的色谱指纹图谱预测银杏叶总抗氧化活性 被引量:11
4
作者 姚卫峰 胡育筑 +1 位作者 牟玲丽 余伯阳 《分析化学》 SCIE EI CAS CSCD 北大核心 2009年第3期383-388,共6页
在色谱图基线校正和色谱峰匹配基础上,提出以40个银杏叶提取物HPLC指纹图谱的色谱图轮廓作为输入,相应的提取物总抗氧化活性作为输出,建立最小二乘支持向量机回归模型,并对包含10个样本的测试集进行了预测。最小二乘支持向量机的测试集... 在色谱图基线校正和色谱峰匹配基础上,提出以40个银杏叶提取物HPLC指纹图谱的色谱图轮廓作为输入,相应的提取物总抗氧化活性作为输出,建立最小二乘支持向量机回归模型,并对包含10个样本的测试集进行了预测。最小二乘支持向量机的测试集预测误差均方根(RMSEP)为0.0230,预测结果优于目前普遍使用的误差反向传播神经网络和偏最小二乘回归。与采用色谱峰面积为分析变量的模型预测结果比较表明:采用消除干扰后的色谱图全谱轮廓保留了样本的全部信息。 展开更多
关键词 中药色谱指纹图谱 色谱图轮廓 基线校正 峰匹配 最小二乘支持向量机 总抗氧化活性
下载PDF
基于近红外光谱的褐变板栗识别建模方法研究 被引量:8
5
作者 郑剑 周竹 +1 位作者 仲山民 周厚奎 《食品科技》 CAS 北大核心 2016年第1期285-290,共6页
为了实现褐变板栗的快速无损分选,研究了基于近红外光谱技术的褐变板栗栗仁检测方法。试验在1000-2500 nm波段范围内采集板栗栗仁的反射光谱,通过标准正态变量变换预处理后,采用K-最近邻法(KNN)、簇类独立软模式法(SIMCA)、主成分回... 为了实现褐变板栗的快速无损分选,研究了基于近红外光谱技术的褐变板栗栗仁检测方法。试验在1000-2500 nm波段范围内采集板栗栗仁的反射光谱,通过标准正态变量变换预处理后,采用K-最近邻法(KNN)、簇类独立软模式法(SIMCA)、主成分回归-线性判别分析法(PCA-LDA)、偏最小二乘回归-线性判别分析法(PLS-LDA)以及最小二乘-支持向量机判别分析法(LS-SVM)分别建立褐变板栗识别模型并进行比较分析。偏最小二乘结合最小二乘-支持向量机所建PLS-LS-SVM模型性能最优,该模型对测试集的敏感性、特异性和识别正确率分别为1.00%、0.92%和95.00%。结果表明:近红外光谱结合PLS-LS-SVM可用于褐变板栗的快速无损检测。 展开更多
关键词 近红外光谱 褐变 建模方法 最小二乘-支持向量机 偏最小二乘-线性判别分析 板栗
原文传递
转基因水稻及其亲本叶片的可见/近红外光谱分析 被引量:8
6
作者 朱文超 成芳 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2012年第2期370-373,共4页
应用可见/近红外光谱技术实现了转基因水稻叶片的快速识别和叶绿素含量(SPAD)的快速检测。建立偏最小二乘-支持向量机(LS-SVM)鉴别模型,校正集的正确率为100%,同时应用连续投影算法(SPA)提取有效波长,建立SPA-LS-SVM鉴别模型,只用了全... 应用可见/近红外光谱技术实现了转基因水稻叶片的快速识别和叶绿素含量(SPAD)的快速检测。建立偏最小二乘-支持向量机(LS-SVM)鉴别模型,校正集的正确率为100%,同时应用连续投影算法(SPA)提取有效波长,建立SPA-LS-SVM鉴别模型,只用了全变量的0.3%进行建模,其预测集的正确率达到87.27%。在定量分析中,各模型的最优结果均来自经过正交信号校正(OSC)的光谱数据,经过SPA处理后的模型均优于最优的全波段PLS模型,说明SPA是一种有效的波长选择方法。最优SPAD值预测模型为SPA-LS-SVM,其相关系数(r)和预测均方根误差(RMSEP)分别为0.902 2和1.312 1,获得了满意的结果。这说明提出的SPA-LS-SVM方法能快速识别转基因水稻叶片并对SPAD值进行准确预测,为实现大田活体鉴别与连续监测提供了新方法。 展开更多
关键词 可见/近红外光谱 转基因水稻叶片 叶绿素含量 连续投影算法 偏最小二乘-支持向量机
下载PDF
基于混合最小二乘支持向量机网络模型的非线性系统辨识 被引量:7
7
作者 陈杰 朱琳 《控制理论与应用》 EI CAS CSCD 北大核心 2010年第3期303-309,共7页
针对基于输入输出数据的非线性系统辨识问题,提出一种新的混合最小二乘支持向量机(LS-SVMs)网络模型及相应的学习算法.该算法将系统的辨识问题动态自适应的划分为若干子问题,将支持向量机(SVM)用于各子模块辨识;通过分析模型的统计学特... 针对基于输入输出数据的非线性系统辨识问题,提出一种新的混合最小二乘支持向量机(LS-SVMs)网络模型及相应的学习算法.该算法将系统的辨识问题动态自适应的划分为若干子问题,将支持向量机(SVM)用于各子模块辨识;通过分析模型的统计学特性,给出基于整体框架优化的系统参数辨识方法.针对系统中参数相关联的特性,采用期望条件最大化(ECM)算法对其进行条件辨识,同时结合正则化理论和最小二乘法,保证各专家模块的结构风险最小化辨识原则.试验结果表明,该方法兼具良好的辨识精度和泛化性能. 展开更多
关键词 混合专家系统 最小二乘支持向量机 非线性系统辨识 期望条件最大化 正则化
下载PDF
LS-SVM在电梯交通流预测中的应用 被引量:2
8
作者 计丽霞 付晓刚 《上海电机学院学报》 2006年第3期62-64,共3页
支持向量机是一种基于统计学理论学习的新颖的机器学习方法,该方法已广泛应用于解决分类和回归问题。提出一种基于时间序列的最小二乘支持向量机算法应用于电梯交通流的预测方法。仿真结果表明了这种预测方法的有效性。
关键词 电梯交通流 预测 最小二乘支持向量机
下载PDF
基于最小二乘支持向量机和高分辨率遥感影像的大尺度区域岩性划分 被引量:17
9
作者 杨佳佳 姜琦刚 +2 位作者 陈永良 崔瀚文 张汉女 《中国石油大学学报(自然科学版)》 EI CAS CSCD 北大核心 2012年第1期60-67,共8页
基于大尺度区域分割的理念,提取高分辨率遥感图像中与岩性相关的纹理、形状、光谱信息,利用最小二乘支持向量机(LS-SVM)在非线性预测中的优势,对研究区地质岩性进行识别。首先对高分辨率图像中与岩性相关的光谱、纹理、形状、高程等特... 基于大尺度区域分割的理念,提取高分辨率遥感图像中与岩性相关的纹理、形状、光谱信息,利用最小二乘支持向量机(LS-SVM)在非线性预测中的优势,对研究区地质岩性进行识别。首先对高分辨率图像中与岩性相关的光谱、纹理、形状、高程等特征信息进行样本选取,选取过程中以图像的纹理为主要特征信息,同时以J-M距离、转换分类度为依据选取最优特征空间,采用因子分析变换降维对特征空间进行压缩,实现特征信息最优化;然后对已知样本进行训练,建立分类模型,评价模型精度;最后利用模型对研究区进行岩性划分,并进行分类后处理。研究结果表明:基于LS-SVM的分类方法在利用高分辨率遥感图像岩性识别中表现良好,为地质岩性分类提供了一种新的方法和手段;加入纹理等信息后的LS-SVM分类模型更加利于岩性的判别。 展开更多
关键词 岩性识别 大尺度区域分割 最小二乘支持向量机 高分辨率 遥感
下载PDF
应用多光谱图像技术获取黄瓜叶片含氮量及叶面积指数 被引量:16
10
作者 刘飞 王莉 何勇 《光学学报》 EI CAS CSCD 北大核心 2009年第6期1616-1620,共5页
为了快速准确地获取黄瓜叶片的含氮量和叶面积指数等生长信息,提出了采用多光谱图像技术对黄瓜生长信息进行检测的新方法。利用标定板建立黄瓜叶片光谱反射率同图像灰度值之间的线性公式。通过多光谱相机对样本在绿光、红光和近红外三... 为了快速准确地获取黄瓜叶片的含氮量和叶面积指数等生长信息,提出了采用多光谱图像技术对黄瓜生长信息进行检测的新方法。利用标定板建立黄瓜叶片光谱反射率同图像灰度值之间的线性公式。通过多光谱相机对样本在绿光、红光和近红外三个通道的图像进行处理,获得叶片样本在每一通道的灰度值,然后根据标定板所建立的灰度值与反射率间的经验线性公式将对应的灰度值转为反射率值,并由反射率值计算出黄瓜的植被指数。采用最小二乘-支持向量机(LS-SVM)建立植被指数同叶片含氮景以及叶面积指数问的拟合模型。结果表明植被指数同叶片含氮量和叶面积指数的拟合相关系数分别为0.8665和0.8553。表明植被指数与黄瓜的叶片含氮量和叶面积指数具有紧密的相关性,也为快速采集黄瓜生长信息提供了一种新方法。 展开更多
关键词 医用光学与生物技术 多光谱图像技术 黄瓜 含氮量 叶面积指数 最小二乘-支持向量机
原文传递
基于鲁棒能量模型LS-TSVM和DGA的变压器故障诊断 被引量:14
11
作者 陈欢 彭辉 +2 位作者 舒乃秋 李自品 龙嘉文 《电力系统保护与控制》 EI CSCD 北大核心 2017年第21期134-139,共6页
鲁棒能量模型最小二乘双支持向量机作为最小二乘双支持向量机(LS-TSVM)的改进算法,训练速度快、鲁棒性好且泛化能力强。将其引入到变压器故障诊断中,并提出一种鸡群算法优化鲁棒能量模型LS-TSVM的变压器故障诊断模型。在该模型中,结合... 鲁棒能量模型最小二乘双支持向量机作为最小二乘双支持向量机(LS-TSVM)的改进算法,训练速度快、鲁棒性好且泛化能力强。将其引入到变压器故障诊断中,并提出一种鸡群算法优化鲁棒能量模型LS-TSVM的变压器故障诊断模型。在该模型中,结合二叉树和鲁棒能量模型LS-TSVM构造多类分类器用于变压器故障类型识别,并采用搜索性能较强的鸡群算法对鲁棒能量模型LS-TSVM的参数进行优化,以使模型的诊断性能达到最佳。基于DGA的变压器故障诊断实例表明,该方法故障诊断模型精度高,诊断效果优于PSO-SVM模型。 展开更多
关键词 最小二乘双支持向量机(LS-TSVM) 鲁棒能量模型最小二乘双支持向量机(RELS-TSVM) 鸡群算法(CSO) 变压器 故障诊断
下载PDF
基于LS-SVM的烤烟烟叶产地判别 被引量:7
12
作者 章英 贺立源 +1 位作者 叶颖泽 吴昭辉 《湖北农业科学》 北大核心 2012年第3期583-585,共3页
为了探索一种快速有效的烤烟烟叶产地鉴别方法,利用近红外光谱技术结合最小二乘支持向量机(LS-SVM)对烤烟烟叶的产地进行了判别。选择云南、湖北、河南三地不同等级烤烟烟叶作为研究对象,对原始光谱数据进行平滑和附加散射校正(MSC)预... 为了探索一种快速有效的烤烟烟叶产地鉴别方法,利用近红外光谱技术结合最小二乘支持向量机(LS-SVM)对烤烟烟叶的产地进行了判别。选择云南、湖北、河南三地不同等级烤烟烟叶作为研究对象,对原始光谱数据进行平滑和附加散射校正(MSC)预处理后再进行主成分分析,选择4~12个主成分作为输入变量进行LS-SVM建模。结果显示,该LS-SVM模型预测效果较好,预测相关系数rp≥0.990 7,预测标准误差(SEP)和预测均方根误差(RMSEP)分别为1.755 1和1.737 3,优于偏最小二乘回归(PLS)的预测结果,基于LS-SVM的近红外光谱技术能够很好地对烟叶产地进行判别。 展开更多
关键词 烟叶 产地判别 近红外光谱 最小二乘支持向量机
下载PDF
基于加权最小二乘双支持向量机的含噪声分类 被引量:4
13
作者 穆晓霞 李钧涛 陈留院 《计算机仿真》 CSCD 北大核心 2014年第5期288-292,共5页
针对最小二乘双支持向量机对噪声样本敏感的问题,依据给含有大噪声的样本赋予较小权重、给较小噪声的样本赋予较大权重的原则,通过评估训练样本点到两个非平行分类超平面的距离,构造了能反映样本噪声程度的权重,提出了线性和非线性加权... 针对最小二乘双支持向量机对噪声样本敏感的问题,依据给含有大噪声的样本赋予较小权重、给较小噪声的样本赋予较大权重的原则,通过评估训练样本点到两个非平行分类超平面的距离,构造了能反映样本噪声程度的权重,提出了线性和非线性加权最小二乘双支持向量机,并发展了两种加权支持向量机的求解算法,解决了对含噪声样本的高精度分类问题。将所提两种加权最小二乘双支持向量机分别应用到Heart-statlog和Two-moons数据集上进行仿真,结果表明所提方法有效消除了噪声的影响,提高了分类精度。 展开更多
关键词 支持向量机 最小二乘双支持向量机 加权支持向量机
下载PDF
一种模拟电路的支持向量机故障诊断方法 被引量:4
14
作者 罗志勇 史忠科 《计算机工程》 CAS CSCD 北大核心 2006年第15期34-36,共3页
系统地提出了模拟电路的最小二乘小波支持向量机故障诊断方法。从测试点得到各种故障状态下的输出电压信号,对输出电压信号进行小波去噪,对信号进行小波分解获取多尺度的低频系数和高频系数,并对小波系数进行处理从而提取出故障特征量,... 系统地提出了模拟电路的最小二乘小波支持向量机故障诊断方法。从测试点得到各种故障状态下的输出电压信号,对输出电压信号进行小波去噪,对信号进行小波分解获取多尺度的低频系数和高频系数,并对小波系数进行处理从而提取出故障特征量,以此作为学习样本来训练最小二乘小波支持向量机,确定其模拟电路故障诊断的模型。雷达系统电路仿真结果表明了模拟电路的小波变换和最小二乘小波支持向量机故障诊断方法取得了较好的效果。 展开更多
关键词 最小二乘小波支持向量机 小波变换 故障诊断 模拟电路 雷达
下载PDF
用最小二乘支持向量机的可见-近红外光谱测定蜂花粉贮存时间 被引量:5
15
作者 金航峰 黄凌霞 +2 位作者 吴迪 金佩华 楼程富 《红外与毫米波学报》 SCIE EI CAS CSCD 北大核心 2010年第3期216-219,共4页
为了探索一种快速有效的蜂花粉新鲜程度检测方法,利用可见-近红外光谱技术结合最小二乘支持向量机(LS-SVM)对蜂花粉的贮存时间进行了检测.选择常温环境中贮存时间为4~50天(共计47天)的茶花蜂花粉作为研究对象,将全光谱数据作为输入变... 为了探索一种快速有效的蜂花粉新鲜程度检测方法,利用可见-近红外光谱技术结合最小二乘支持向量机(LS-SVM)对蜂花粉的贮存时间进行了检测.选择常温环境中贮存时间为4~50天(共计47天)的茶花蜂花粉作为研究对象,将全光谱数据作为输入变量建立了LS-SVM模型.结果显示,该LS-SVM模型预测效果较好,预测相关系数rp达到了0.996,预测标准误差(SEP)和预测均方根误差(RMSEP)的值分别为1.310和1.308,优于偏最小二乘法(PLS)和主成分回归(PCR)的预测结果,说明基于LS-SVM的可见-近红外光谱技术能够很好地对花粉贮存时间进行检测.同时对不同贮存时间段花粉的预测效果进行了比较,发现该LS-SVM模型适用于对第11~50天范围的贮存时间进行检测. 展开更多
关键词 可见-近红外光谱 贮存时间 最小二乘支持向量机
下载PDF
基于近红外光谱技术的针叶材板材表面节子缺陷检测 被引量:4
16
作者 周竹 尹建新 +1 位作者 周素茵 周厚奎 《浙江农林大学学报》 CAS CSCD 北大核心 2017年第3期520-527,共8页
为了实现木板材依据节子进行自动化分级,采用近红外光谱技术研究了多种针叶材表面节子缺陷的检测方法。采用Smart Eye 1700近红外光谱仪获取北美黄杉Pseudotsuga menziesii,铁杉Tsuga chinensis,云杉Picea asperata,白云杉Picea glauca... 为了实现木板材依据节子进行自动化分级,采用近红外光谱技术研究了多种针叶材表面节子缺陷的检测方法。采用Smart Eye 1700近红外光谱仪获取北美黄杉Pseudotsuga menziesii,铁杉Tsuga chinensis,云杉Picea asperata,白云杉Picea glauca-英格曼云杉Picea engelmannii-扭叶松Pinus contorta-冷杉Abies laciocarp a(SPF)等4种板材的近红外光谱(1 000~1 650 nm),比较了光谱预处理方法、建模方法对节子识别的影响,并首次对多种针叶树材进行了节子识别的适应性研究,随后引入一种新的变量选择方法即随机青蛙算法用于优选节子检测的特征波长,在此基础上建立了板材节子识别的最小二乘-支持向量机(LS-SVM)模型。结果显示:一阶导数光谱预处理结合LS-SVM所建混合树种板材节子识别模型性能最优。随机青蛙算法提取了8个特征波长变量,仅占全波段变量的1.23%,所建简化模型效果最好。该模型对测试集的敏感性、特异性和识别准确率分别为98.49%,93.42%和96.30%。近红外光谱技术结合化学计量学方法可以对针叶材树种板材的表面节子进行快速准确检测,随机青蛙算法是提取板材表面节子缺陷特征的有效方法。该结果可为下一步搭建木材节子快速检测系统提供技术支撑。 展开更多
关键词 木材科学与技术 近红外光谱 针叶材 板材 节子 随机青蛙算法 最小二乘-支持向量机
下载PDF
最小二乘双支持向量机的在线学习算法 被引量:2
17
作者 穆晓霞 陈留院 李钧涛 《计算机仿真》 CSCD 北大核心 2012年第3期25-28,共4页
针对具有两个非并行分类超平面的最小二乘双支持向量机,提出了一种在线学习算法。通过利用矩阵求逆分解引理,所提在线学习算法能充分利用历史的训练结果,避免了大型矩阵的求逆计算过程,从而降低了计算的复杂性。仿真结果验证了所提学习... 针对具有两个非并行分类超平面的最小二乘双支持向量机,提出了一种在线学习算法。通过利用矩阵求逆分解引理,所提在线学习算法能充分利用历史的训练结果,避免了大型矩阵的求逆计算过程,从而降低了计算的复杂性。仿真结果验证了所提学习算法的有效性。 展开更多
关键词 支持向量机 双支持向量机 最小二乘双支持向量机 在线学习
下载PDF
一种模糊最小二乘孪生支持向量回归机的改进算法 被引量:2
18
作者 唐辉军 杨志民 《计算机应用与软件》 北大核心 2018年第4期281-286,共6页
模糊最小二乘孪生支持向量机模型融合了模糊函数和最小二乘孪生支持向量机算法特性,以解决训练数据集存在孤立点噪声和运算效率低下问题。针对回归过程基于统计学习结构风险最小化原则,对该模型进行L_2范数正则化改进。考虑到大规模数... 模糊最小二乘孪生支持向量机模型融合了模糊函数和最小二乘孪生支持向量机算法特性,以解决训练数据集存在孤立点噪声和运算效率低下问题。针对回归过程基于统计学习结构风险最小化原则,对该模型进行L_2范数正则化改进。考虑到大规模数据集的训练效率问题,对原始模型进行了L_1范数正则化改进。基于增量学习特性,对数据集训练过程进行增量选择迭加以加快训练速度。在UCI数据集上验证了相关改进算法的优越性。 展开更多
关键词 最小二乘孪生支持向量机 模糊隶属度 正则化 增量学习
下载PDF
基于测试分析和RELS-TSVM的舰船系统固有能力评估 被引量:1
19
作者 范敏 高饶翔 +1 位作者 乐天 彭辉 《中国舰船研究》 CSCD 北大核心 2019年第2期156-164,共9页
[目的]固有能力是效能的重要组成部分。为开展舰船系统固有能力评估工作,[方法]以舰船系统指标体系为基础,对无法定量获取的功能指标,以系统级测试、设备BIT/外部测试点测试结果和可靠性模型,建立故障状态与功能指标的量化对应关系。结... [目的]固有能力是效能的重要组成部分。为开展舰船系统固有能力评估工作,[方法]以舰船系统指标体系为基础,对无法定量获取的功能指标,以系统级测试、设备BIT/外部测试点测试结果和可靠性模型,建立故障状态与功能指标的量化对应关系。结合多分类鲁棒能量模型—最小二乘双支持向量机(RELS-TSVM)方法对系统固有能力进行初步评判。[结果]仿真结果表明,所提的多分类评估模型与简单支持向量机模型相比,分类正确率提高了8.97%;通过添加系统级测试方案,提高了对系统故障的覆盖率,提升了评估结果的可信度,解决了基于数据驱动的固有能力评估方法中数据获取难度大的问题。[结论]验证了基于测试分析和RELS-TSVM的舰船系统固有能力评估方案的可行性和优势,可为武器装备效能评估研究提供新的思路。 展开更多
关键词 舰船系统 系统级测试 鲁棒能量模型最小二乘双支持向量机 固有能力评估
下载PDF
LS-SVM模型选择的秩准则及其比较
20
作者 陈建东 王小明 《计算机工程》 CAS CSCD 北大核心 2011年第18期185-187,共3页
在最小二乘支持向量机的模型选择问题中,基于再抽样技术的模型选择方法,不能从根本上解决计算强度过高的问题。为此,提出基于模型复杂程度进行惩罚的新方法——秩准则,给出估计最小二乘支持向量机调谐参数的快速稳健算法。实例研究表明... 在最小二乘支持向量机的模型选择问题中,基于再抽样技术的模型选择方法,不能从根本上解决计算强度过高的问题。为此,提出基于模型复杂程度进行惩罚的新方法——秩准则,给出估计最小二乘支持向量机调谐参数的快速稳健算法。实例研究表明,该方法不仅能保证模型的预测精度和稳健性,而且在计算速度上优于快速Bootstrap方法。 展开更多
关键词 最小二乘支持向量机 模型选择 BOOTSTRAP方法 惩罚方法 秩准则
下载PDF
上一页 1 2 27 下一页 到第
使用帮助 返回顶部