期刊文献+

一种模糊最小二乘孪生支持向量回归机的改进算法 被引量:2

AN IMPROVED ALGORITHM OF FUZZY LEAST SQUARES TWIN SUPPORT VECTOR REGRESSION MACHINE
下载PDF
导出
摘要 模糊最小二乘孪生支持向量机模型融合了模糊函数和最小二乘孪生支持向量机算法特性,以解决训练数据集存在孤立点噪声和运算效率低下问题。针对回归过程基于统计学习结构风险最小化原则,对该模型进行L_2范数正则化改进。考虑到大规模数据集的训练效率问题,对原始模型进行了L_1范数正则化改进。基于增量学习特性,对数据集训练过程进行增量选择迭加以加快训练速度。在UCI数据集上验证了相关改进算法的优越性。 Fuzzy least squares twin support vector machines model combined the characteristics of fuzzy function and least squares twin support vector machines algorithm to solve the problem of isolated point noise and inefficiency of training data set.According to regression progress based on the principle of minimizing the risk of statistical learning structure,a regularization of L 2 norm was improved for this model.Taking into account the training efficiency of large-scale data sets,L 1 model regularization was improved on the original model.Finally,based on the incremental learning characteristics,the data set training process was incrementally selected and superposed to speed up training.The superiority of the improved algorithm was verified on the UCI dataset.
作者 唐辉军 杨志民 Tang Huijun;Yang Zhimin(College of Information Engineering,Ningbo Dahongying University,Ningbo 315175,Zhejiang,China;College of Zhijiang,Zhejiang University of Technology,Hangzhou 310024,Zhejiang,China)
出处 《计算机应用与软件》 北大核心 2018年第4期281-286,共6页 Computer Applications and Software
基金 国家自然科学基金项目(10926198) 浙江省公益技术应用研究计划项目(2016C33249) 宁波市自然科学基金项目( 2015A610135 2017A610122)
关键词 最小二乘孪生支持向量机 模糊隶属度 正则化 增量学习 Least squares twin support vector machines Fuzzy membership Regularization Incremental learning
  • 相关文献

参考文献3

二级参考文献22

  • 1王玲,薄列峰,刘芳,焦李成.稀疏隐空间支持向量机[J].西安电子科技大学学报,2006,33(6):896-901. 被引量:8
  • 2陈爱军,宋执环,李平.基于矢量基学习的最小二乘支持向量机建模[J].控制理论与应用,2007,24(1):1-5. 被引量:21
  • 3甘良志,孙宗海,孙优贤.稀疏最小二乘支持向量机[J].浙江大学学报(工学版),2007,41(2):245-248. 被引量:27
  • 4Suykens J A K, Vandewalle J. Least Squares Support Vector Machines Classifiers[J]. Neural Processing Letters, 1999, 9(3) : 293-300. 被引量:1
  • 5Zhang X G. Using Class-center Vector to Built Support Vector Machines[C]//Neural Network for Signal Processing Ⅸ- Proc of the 1999 IEEE Workshop. New York: IEEE Press, 1999: 3-11. 被引量:1
  • 6Tax D M J, Duin R P W. Support Vector Domain Description[J]. Pattern Recognition Letters, 1999, 20 (11-13):1 191- 1 199. 被引量:1
  • 7Lin C F, Wang S D. Fuzzy Support Vector Machines[J]. IEEE Trans on Neural Network, 2002, 13(3): 466-471. 被引量:1
  • 8Huang H P, Liu Y H. Fuzzy Support Vector Machines for Pattern Recognition and Data Mining[J]. Int J of Fuzzy Systems, 2002, 4(3): 3-12. 被引量:1
  • 9Tao Q, Wang J. A New Fuzzy Support Vector Machines Based on the Weighted Margin[J]. Neural Processing Letters, 2004, 20(3): 139-150. 被引量:1
  • 10Wang Y Q, Wang S Y, Lai K K. A New Fuzzy Support Vector Machine to Evaluate Credit Rist[J]. IEEE Trans on Fuzzy Systems, 2005,13(6) : 820-831. 被引量:1

共引文献15

同被引文献9

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部