期刊文献+

基于LS-SVM和高光谱技术的玉米叶片叶绿素含量检测 被引量:14

Rapid detection of chlorophyll content in corn leaves by using least squares-support vector machines and hyperspectral images
下载PDF
导出
摘要 为实现玉米叶片叶绿素含量的快速无损测定,采集不同氮素水平的玉米叶片,制备校正集样本60个,验证集样本16个,获取400~1 100 nm波段范围的高光谱数据和相应叶绿素含量.采用变量标准化、13点平滑、一阶导数3种预处理方法结合,根据相关系数图谱选择470~760 nm波段作为光谱数据分析对象;利用最小二乘支持向量机建立玉米叶片叶绿素含量与高光谱数据的定量分析模型,基于交叉验证的网格搜索寻找LS-SVM的最优参数,建立LS-SVM模型;所建立的校正模型相关系数为0.96,验证相关系数为0.93.研究结果为高光谱技术在精准减量施肥遥感检测中的应用提供了技术基础. For the rapid and non-destructive detection of chlorophyll content in corn leaves, representa- tive corn leaves with different N levels were collected. 60 calibration samples and 16 validation samples were prepared. Hyperspectral images in the range of 400 - 1 100 nm were collected and relevant chloro- phyll content was measured according to the National Standard. Standard normalized variation, 13 points smoothing, and first derivative were applied as pretreatment method. According to the correlation coeffi- cient, the wave band of 470 -760 nm was selected as analysis object. Least squares-support vector ma- chines were used to establish the model between the corn leaves' chlorophyll content and the hyperspec- tral data. The optimal parameters of LS - SVM were obtained by application of grid-search based on cross- validation. The results of LS - SVM model indicate technical support for hyperspeetral application in re- mote sensing, with correlation coefficient of 0. 96 and calibration coefficient of 0.93, respectively.
出处 《江苏大学学报(自然科学版)》 EI CAS 北大核心 2011年第2期125-128,174,共5页 Journal of Jiangsu University:Natural Science Edition
基金 国家"十一五"科技支撑计划项目(2007BAD89B04)
关键词 玉米叶片 叶绿素含量 高光谱成像 最小二乘支持向量机 检测 corn leaves chlorophyll content hyperspectral imaging least squares-support vector machines detection
  • 相关文献

参考文献12

  • 1袁金国,牛铮.基于Hyperion高光谱图像的氮和叶绿素制图[J].农业工程学报,2007,23(4):172-178. 被引量:21
  • 2张金恒,王珂,王人潮.叶绿素计SPAD-502在水稻氮素营养诊断中的应用[J].西北农林科技大学学报(自然科学版),2003,31(2):177-180. 被引量:72
  • 3Peng Y, Lu R. An LCTF-based muhispectral image sys- tem for estimation of apple fruit firmness:Part II. Selec- tion of optimal wavelength and development of prediction models [ J ]. Transactions of the ASABE, 2006, 49 ( 1 ) : 269 - 275. 被引量:1
  • 4Peng Y, Lu R. Analysis of spatially resolved hyperspectral scattering images for assessing apple fruit firmness and soluble solids content[J]. Post harvest Biology and Technology, 2008, 48( 1 ) :52 -62. 被引量:1
  • 5Qin J W, Lu R. Measurement of the optical properties of fruits and vegetables using spatially resolved hyperspec- tral diffuse reflectance imaging technique[ J ]. Post harvest Biol Techol, 2008, 49 (3) :355 - 365. 被引量:1
  • 6Zhang J, Peng Y. Hyperspectral scattering profiles for prediction of the microbial spoilage of beef [ J ]. Proc SPIE, doi:10. 1117/12. 819424. 被引量:1
  • 7黄春燕,王登伟,曹连莆,张煜星,任丽彤,程诚.棉花地上鲜生物量的高光谱估算模型研究[J].农业工程学报,2007,23(3):131-135. 被引量:29
  • 8乔红波..麦蚜、白粉病危害后冬小麦冠层高光谱的测量与分析[D].中国农业科学院,2004:
  • 9Kim I, Kim M S, Chen Y R, et al. Detection of skin tumors on chicken carcass using hyperspectral fluores- cence imaging[J]. Transaction of the ASAE, 2004, 47 (5) :1785 - 1792. 被引量:1
  • 10Nello C, John S T. An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods [ M ]. Beijing:China Machine Press, 2005:98-102. 被引量:1

二级参考文献56

共引文献155

同被引文献209

引证文献14

二级引证文献179

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部