The mechanical characteristics and acoustic behavior of rock masses are greatly influenced by stochastic joints.In this study,numerical models of rock masses incorporating intermittent joints with different numbers an...The mechanical characteristics and acoustic behavior of rock masses are greatly influenced by stochastic joints.In this study,numerical models of rock masses incorporating intermittent joints with different numbers and dip angles were produced using the finite element method(FEM)with the intrinsic cohesive zone model(ICZM).Then,the uniaxial compressive and wave propagation simulations were performed.The results indicate that the joint number and dip angle can affect the mechanical and acoustic properties of the models.The uniaxial compressive strength(UCS)and wave velocity of rock masses decrease monotonically as the joint number increases.However,the wave velocity grows monotonically as the joint dip angle increases.When the joint dip angle is 45°–60°,the UCS of the rock mass is lower than that of other dip angles.The wave velocity parallel to the joints is greater than that perpendicular to the joints.When the dip angle of joints remains unchanged,the UCS and wave velocity are positively related.When the joint dip angle increases,the variation amplitude of the UCS regarding the wave velocity increases.To reveal the effect of the joint distribution on the velocity,a theoretical model was also proposed.According to the theoretical wave velocity,the change in wave velocity of models with various joint numbers and dip angles was consistent with the simulation results.Furthermore,a theoretical indicator(i.e.fabric tensor)was adopted to analyze the variation of the wave velocity and UCS.展开更多
Objective Anthracycline chemotherapeutic agents have significant cardiotoxicity.The present study emphasized the effect of anthracycline chemotherapy drugs on left ventricular(LV)myocardial stiffness in breast cancer ...Objective Anthracycline chemotherapeutic agents have significant cardiotoxicity.The present study emphasized the effect of anthracycline chemotherapy drugs on left ventricular(LV)myocardial stiffness in breast cancer patients by measuring the intrinsic wave velocity propagation(IVP),and evaluating the potential clinical value of IVP in detecting early LV diastolic function impairment.Methods A total of 68 newly diagnosed breast cancer patients,who were treated with anthracycline-based chemotherapy,were analyzed.Transthoracic echocardiography was performed at baseline(T0),and after 1,2,3,4 and 8 chemotherapeutic cycles(T1,T2,T3,T4 and T5,respectively).Then,the IVP,LV strain parameters[global longitudinal strain(GLS),longitudinal peak strain rate at systole(LSRs),longitudinal peak strain rate at early diastole(LSRe),longitudinal peak strain rate at late diastole(LSRa),and the E/LSRe ratio],and conventional echocardiographic parameters were obtained and further analyzed.A relative reduction of>15%in GLS was considered a marker of early LV subclinical dysfunction.Results Compared to the T0 stage,IVP significantly increased at the T1 stage.However,there were no significant changes in GLS,LSRs,or LSRe between the T0 and T1 stages.These parameters significantly decreased from the T2 stage.LSRa started to significantly decrease at the T5 stage,and the E/LSRe ratio started to significantly increase at the T3 stage(all P<0.05).At the T0 stage,IVP(AUC=0.752,P<0.001)had a good predictive value for LV subclinical dysfunction after chemotherapy.Conclusions IVP is a potentially sensitive parameter for the early clinical assessment of anthracycline-related cardiac diastolic impairment.展开更多
基金financial support from the National Key R&D Program of China(Grant No.2020YFA0711802).
文摘The mechanical characteristics and acoustic behavior of rock masses are greatly influenced by stochastic joints.In this study,numerical models of rock masses incorporating intermittent joints with different numbers and dip angles were produced using the finite element method(FEM)with the intrinsic cohesive zone model(ICZM).Then,the uniaxial compressive and wave propagation simulations were performed.The results indicate that the joint number and dip angle can affect the mechanical and acoustic properties of the models.The uniaxial compressive strength(UCS)and wave velocity of rock masses decrease monotonically as the joint number increases.However,the wave velocity grows monotonically as the joint dip angle increases.When the joint dip angle is 45°–60°,the UCS of the rock mass is lower than that of other dip angles.The wave velocity parallel to the joints is greater than that perpendicular to the joints.When the dip angle of joints remains unchanged,the UCS and wave velocity are positively related.When the joint dip angle increases,the variation amplitude of the UCS regarding the wave velocity increases.To reveal the effect of the joint distribution on the velocity,a theoretical model was also proposed.According to the theoretical wave velocity,the change in wave velocity of models with various joint numbers and dip angles was consistent with the simulation results.Furthermore,a theoretical indicator(i.e.fabric tensor)was adopted to analyze the variation of the wave velocity and UCS.
基金the Hubei Province Health and Famliy Planning Scientific Research Project(No.WJ2023M011)the Department of Finance of Hubei Province(No.3890750).
文摘Objective Anthracycline chemotherapeutic agents have significant cardiotoxicity.The present study emphasized the effect of anthracycline chemotherapy drugs on left ventricular(LV)myocardial stiffness in breast cancer patients by measuring the intrinsic wave velocity propagation(IVP),and evaluating the potential clinical value of IVP in detecting early LV diastolic function impairment.Methods A total of 68 newly diagnosed breast cancer patients,who were treated with anthracycline-based chemotherapy,were analyzed.Transthoracic echocardiography was performed at baseline(T0),and after 1,2,3,4 and 8 chemotherapeutic cycles(T1,T2,T3,T4 and T5,respectively).Then,the IVP,LV strain parameters[global longitudinal strain(GLS),longitudinal peak strain rate at systole(LSRs),longitudinal peak strain rate at early diastole(LSRe),longitudinal peak strain rate at late diastole(LSRa),and the E/LSRe ratio],and conventional echocardiographic parameters were obtained and further analyzed.A relative reduction of>15%in GLS was considered a marker of early LV subclinical dysfunction.Results Compared to the T0 stage,IVP significantly increased at the T1 stage.However,there were no significant changes in GLS,LSRs,or LSRe between the T0 and T1 stages.These parameters significantly decreased from the T2 stage.LSRa started to significantly decrease at the T5 stage,and the E/LSRe ratio started to significantly increase at the T3 stage(all P<0.05).At the T0 stage,IVP(AUC=0.752,P<0.001)had a good predictive value for LV subclinical dysfunction after chemotherapy.Conclusions IVP is a potentially sensitive parameter for the early clinical assessment of anthracycline-related cardiac diastolic impairment.